构造正态分布分位数比率的置信区间

IF 0.8 Q3 STATISTICS & PROBABILITY
A. Malekzadeh, S. Mahmoudi
{"title":"构造正态分布分位数比率的置信区间","authors":"A. Malekzadeh, S. Mahmoudi","doi":"10.1515/mcma-2020-2070","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, to construct a confidence interval (general and shortest) for quantiles of normal distribution in one population, we present a pivotal quantity that has non-central t distribution. In the case of two independent normal populations, we propose a confidence interval for the ratio of quantiles based on the generalized pivotal quantity, and we introduce a simple method for extracting its percentiles, based on which a shorter confidence interval can be created. Also, we provide general and shorter confidence intervals using the method of variance estimate recovery. The performance of five proposed methods will be examined by using simulation and examples.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"26 1","pages":"325 - 334"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Constructing a confidence interval for the ratio of normal distribution quantiles\",\"authors\":\"A. Malekzadeh, S. Mahmoudi\",\"doi\":\"10.1515/mcma-2020-2070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, to construct a confidence interval (general and shortest) for quantiles of normal distribution in one population, we present a pivotal quantity that has non-central t distribution. In the case of two independent normal populations, we propose a confidence interval for the ratio of quantiles based on the generalized pivotal quantity, and we introduce a simple method for extracting its percentiles, based on which a shorter confidence interval can be created. Also, we provide general and shorter confidence intervals using the method of variance estimate recovery. The performance of five proposed methods will be examined by using simulation and examples.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"26 1\",\"pages\":\"325 - 334\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2020-2070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2020-2070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

摘要在本文中,为了构造一个群体中正态分布分位数的置信区间(一般和最短),我们给出了一个具有非中心t分布的关键量。在两个独立正态总体的情况下,我们提出了一个基于广义关键量的分位数比率的置信区间,并介绍了一种提取其分位数的简单方法,基于该方法可以创建更短的置信区间。此外,我们使用方差估计恢复的方法提供了一般的和较短的置信区间。将通过仿真和实例来检验所提出的五种方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing a confidence interval for the ratio of normal distribution quantiles
Abstract In this paper, to construct a confidence interval (general and shortest) for quantiles of normal distribution in one population, we present a pivotal quantity that has non-central t distribution. In the case of two independent normal populations, we propose a confidence interval for the ratio of quantiles based on the generalized pivotal quantity, and we introduce a simple method for extracting its percentiles, based on which a shorter confidence interval can be created. Also, we provide general and shorter confidence intervals using the method of variance estimate recovery. The performance of five proposed methods will be examined by using simulation and examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信