{"title":"基于采样路线图的有效近似最优搜索的渐进最优检测规划","authors":"Mengyu Fu, A. Kuntz, Oren Salzman, R. Alterovitz","doi":"10.1177/02783649231171646","DOIUrl":null,"url":null,"abstract":"Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task with a planar five DOF manipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"150 - 175"},"PeriodicalIF":7.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotically optimal inspection planning via efficient near-optimal search on sampled roadmaps\",\"authors\":\"Mengyu Fu, A. Kuntz, Oren Salzman, R. Alterovitz\",\"doi\":\"10.1177/02783649231171646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task with a planar five DOF manipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"42 1\",\"pages\":\"150 - 175\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649231171646\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649231171646","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Asymptotically optimal inspection planning via efficient near-optimal search on sampled roadmaps
Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task with a planar five DOF manipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.