大数据的事实和公平使得科学客观:晶体学的观点

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
J. Helliwell
{"title":"大数据的事实和公平使得科学客观:晶体学的观点","authors":"J. Helliwell","doi":"10.1063/1.5124439","DOIUrl":null,"url":null,"abstract":"A publication is an important narrative of the work done and interpretations made by researchers securing a scientific discovery. As The Royal Society neatly states though, “Nullius in verba” (“Take nobody's word for it”), whereby the role of the underpinning data is paramount. Therefore, the objectivity that preserving that data within the article provides is due to readers being able to check the calculation decisions of the authors. But how to achieve full data archiving? This is the raw data archiving challenge, in size and need for correct metadata. Processed diffraction data and final derived molecular coordinates archiving in crystallography have achieved an exemplary state of the art relative to most fields. One can credit IUCr with developing exemplary peer review procedures, of narrative, underpinning structure factors and coordinate data and validation report, through its checkcif development and submission system introduced for Acta Cryst. C and subsequently developed for its other chemistry journals. The crystallographic databases likewise have achieved amazing success and sustainability these last 50 years or so. The wider science data scene is celebrating the FAIR data accord, namely, that data be Findable, Accessible, Interoperable, and Reusable [Wilkinson et al., “Comment: The FAIR guiding principles for scientific data management and stewardship,” Sci. Data 3, 160018 (2016)]. Some social scientists also emphasize more than FAIR being needed, the data should be “FACT,” which is an acronym meaning Fair, Accurate, Confidential, and Transparent [van der Aalst et al., “Responsible data science,” Bus Inf. Syst. Eng. 59(5), 311–313 (2017)], this being the issue of ensuring reproducibility not just reusability. (Confidentiality of data not likely being relevant to our data obviously.) Acta Cryst. B, C, E, and IUCrData are the closest I know to being both FACT and FAIR where I repeat for due emphasis: the narrative, the automatic “general” validation checks, and the underpinning data are checked thoroughly by subject specialists (i.e., the specialist referees). IUCr Journals are also the best that I know of for encouraging and then expediting the citation of the DOI for a raw diffraction dataset in a publication; examples can be found in IUCrJ, Acta Cryst D, and Acta Cryst F. The wish for a checkcif for raw diffraction data has been championed by the IUCr Diffraction Data Deposition Working Group and its successor, the IUCr Committee on Data.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5124439","citationCount":"7","resultStr":"{\"title\":\"FACT and FAIR with Big Data allows objectivity in science: The view of crystallography\",\"authors\":\"J. Helliwell\",\"doi\":\"10.1063/1.5124439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A publication is an important narrative of the work done and interpretations made by researchers securing a scientific discovery. As The Royal Society neatly states though, “Nullius in verba” (“Take nobody's word for it”), whereby the role of the underpinning data is paramount. Therefore, the objectivity that preserving that data within the article provides is due to readers being able to check the calculation decisions of the authors. But how to achieve full data archiving? This is the raw data archiving challenge, in size and need for correct metadata. Processed diffraction data and final derived molecular coordinates archiving in crystallography have achieved an exemplary state of the art relative to most fields. One can credit IUCr with developing exemplary peer review procedures, of narrative, underpinning structure factors and coordinate data and validation report, through its checkcif development and submission system introduced for Acta Cryst. C and subsequently developed for its other chemistry journals. The crystallographic databases likewise have achieved amazing success and sustainability these last 50 years or so. The wider science data scene is celebrating the FAIR data accord, namely, that data be Findable, Accessible, Interoperable, and Reusable [Wilkinson et al., “Comment: The FAIR guiding principles for scientific data management and stewardship,” Sci. Data 3, 160018 (2016)]. Some social scientists also emphasize more than FAIR being needed, the data should be “FACT,” which is an acronym meaning Fair, Accurate, Confidential, and Transparent [van der Aalst et al., “Responsible data science,” Bus Inf. Syst. Eng. 59(5), 311–313 (2017)], this being the issue of ensuring reproducibility not just reusability. (Confidentiality of data not likely being relevant to our data obviously.) Acta Cryst. B, C, E, and IUCrData are the closest I know to being both FACT and FAIR where I repeat for due emphasis: the narrative, the automatic “general” validation checks, and the underpinning data are checked thoroughly by subject specialists (i.e., the specialist referees). IUCr Journals are also the best that I know of for encouraging and then expediting the citation of the DOI for a raw diffraction dataset in a publication; examples can be found in IUCrJ, Acta Cryst D, and Acta Cryst F. The wish for a checkcif for raw diffraction data has been championed by the IUCr Diffraction Data Deposition Working Group and its successor, the IUCr Committee on Data.\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.5124439\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5124439\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.5124439","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7

摘要

出版物是对研究人员为确保科学发现所做工作和所做解释的重要叙述。然而,正如英国皇家学会巧妙地指出的那样,“Nullius in verba”(“不相信任何人的话”),即基础数据的作用至关重要。因此,在文章中保留这些数据所提供的客观性是因为读者能够检查作者的计算决策。但是如何实现完整的数据归档呢?这是原始数据归档的难题,在大小和对正确元数据的需求方面都是如此。晶体学中经过处理的衍射数据和最终导出的分子坐标存档已经实现了相对于大多数领域的示例性技术状态。通过为Acta Cryst引入的checkcif开发和提交系统,IUCr开发了示例性的同行评审程序,包括叙述、基础结构因素以及协调数据和验证报告。C,随后为其其他化学期刊开发。在过去的50年里,晶体学数据库同样取得了惊人的成功和可持续性 更广泛的科学数据领域正在庆祝FAIR数据协议,即数据是可查找、可访问、可互操作和可重复使用的[Wilkinson等人,“评论:科学数据管理和管理的FAIR指导原则”,《科学数据》316018(2016)]。一些社会科学家还强调,除了需要FAIR之外,数据还应该是“FACT”,这是一个缩写词,意思是公平、准确、机密和透明[van der Aalst et al.,“负责任的数据科学”,Bus Inf.Syst.Eng.59(5),311-313(2017)],这是确保再现性而不仅仅是可重用性的问题。(数据的保密性显然与我们的数据无关。)《晶体报》。B、 C、E和IUCrData是我所知道的最接近FACT和FAIR的数据,我在这里重复强调:叙述、自动“一般”验证检查和基础数据由主题专家(即专家裁判)彻底检查。IUCr期刊也是我所知道的最好的期刊,它鼓励并加快了出版物中原始衍射数据集的DOI引用;实例可在IUCrJ、Acta Cryst D和Acta Crystal F中找到。IUCr衍射数据沉积工作组及其继任者IUCr数据委员会一直支持对原始衍射数据进行核对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FACT and FAIR with Big Data allows objectivity in science: The view of crystallography
A publication is an important narrative of the work done and interpretations made by researchers securing a scientific discovery. As The Royal Society neatly states though, “Nullius in verba” (“Take nobody's word for it”), whereby the role of the underpinning data is paramount. Therefore, the objectivity that preserving that data within the article provides is due to readers being able to check the calculation decisions of the authors. But how to achieve full data archiving? This is the raw data archiving challenge, in size and need for correct metadata. Processed diffraction data and final derived molecular coordinates archiving in crystallography have achieved an exemplary state of the art relative to most fields. One can credit IUCr with developing exemplary peer review procedures, of narrative, underpinning structure factors and coordinate data and validation report, through its checkcif development and submission system introduced for Acta Cryst. C and subsequently developed for its other chemistry journals. The crystallographic databases likewise have achieved amazing success and sustainability these last 50 years or so. The wider science data scene is celebrating the FAIR data accord, namely, that data be Findable, Accessible, Interoperable, and Reusable [Wilkinson et al., “Comment: The FAIR guiding principles for scientific data management and stewardship,” Sci. Data 3, 160018 (2016)]. Some social scientists also emphasize more than FAIR being needed, the data should be “FACT,” which is an acronym meaning Fair, Accurate, Confidential, and Transparent [van der Aalst et al., “Responsible data science,” Bus Inf. Syst. Eng. 59(5), 311–313 (2017)], this being the issue of ensuring reproducibility not just reusability. (Confidentiality of data not likely being relevant to our data obviously.) Acta Cryst. B, C, E, and IUCrData are the closest I know to being both FACT and FAIR where I repeat for due emphasis: the narrative, the automatic “general” validation checks, and the underpinning data are checked thoroughly by subject specialists (i.e., the specialist referees). IUCr Journals are also the best that I know of for encouraging and then expediting the citation of the DOI for a raw diffraction dataset in a publication; examples can be found in IUCrJ, Acta Cryst D, and Acta Cryst F. The wish for a checkcif for raw diffraction data has been championed by the IUCr Diffraction Data Deposition Working Group and its successor, the IUCr Committee on Data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信