Suzuki群中的非幂零子集

IF 0.7 Q2 MATHEMATICS
M. Zarrin
{"title":"Suzuki群中的非幂零子集","authors":"M. Zarrin","doi":"10.22108/IJGT.2017.11176","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group and $mathcal{N}$ be the class of all nilpotent groups. A subset $A$ of $G$ is said to be nonnilpotent if for any two distinct elements $a$ and $b$ in $A$, $langle a, brangle notin mathcal{N}$. If, for any other nonnilpotent subset $B$ in $G$, $|A|geq |B|$, then $A$ is said to be a maximal nonnilpotent subset and the cardinality of this subset (if it exists) is denoted by $omega(mathcal{N}_G)$. In this paper, among other results, we obtain $omega(mathcal{N}_{Suz(q)})$ and $omega(mathcal{N}_{PGL(2,q)})$, where $Suz(q)$ is the Suzuki simple group over the field with $q$ elements and $PGL(2,q)$ is the projective general linear group of degree $2$ over the finite field with $q$ elements, respectively.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnilpotent subsets in the Suzuki groups\",\"authors\":\"M. Zarrin\",\"doi\":\"10.22108/IJGT.2017.11176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a group and $mathcal{N}$ be the class of all nilpotent groups. A subset $A$ of $G$ is said to be nonnilpotent if for any two distinct elements $a$ and $b$ in $A$, $langle a, brangle notin mathcal{N}$. If, for any other nonnilpotent subset $B$ in $G$, $|A|geq |B|$, then $A$ is said to be a maximal nonnilpotent subset and the cardinality of this subset (if it exists) is denoted by $omega(mathcal{N}_G)$. In this paper, among other results, we obtain $omega(mathcal{N}_{Suz(q)})$ and $omega(mathcal{N}_{PGL(2,q)})$, where $Suz(q)$ is the Suzuki simple group over the field with $q$ elements and $PGL(2,q)$ is the projective general linear group of degree $2$ over the finite field with $q$ elements, respectively.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2017.11176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2017.11176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$G$是一个群,$mathcal{N}$是所有幂零群的类。$G$的子集$A$是非幂零的,如果对于任意两个不同的元素$A$和$b$在$A$, $langle A,三角形符号{N}$中。如果,对于$G$中的任何其他非幂零子集$B$, $|A|geq |B|$,则说$A$是一个极大的非幂零子集,并且这个子集的基数(如果它存在)表示为$omega(mathcal{N}_G)$。在本文中,我们得到了$omega(mathcal{N}_{Suz(q)})$和$omega(mathcal{N}_{PGL(2,q)})$,其中$Suz(q)$分别是$q$元域上的Suzuki单群,$PGL(2,q)$是$q$元有限域上$2次的投影一般线性群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonnilpotent subsets in the Suzuki groups
Let $G$ be a group and $mathcal{N}$ be the class of all nilpotent groups. A subset $A$ of $G$ is said to be nonnilpotent if for any two distinct elements $a$ and $b$ in $A$, $langle a, brangle notin mathcal{N}$. If, for any other nonnilpotent subset $B$ in $G$, $|A|geq |B|$, then $A$ is said to be a maximal nonnilpotent subset and the cardinality of this subset (if it exists) is denoted by $omega(mathcal{N}_G)$. In this paper, among other results, we obtain $omega(mathcal{N}_{Suz(q)})$ and $omega(mathcal{N}_{PGL(2,q)})$, where $Suz(q)$ is the Suzuki simple group over the field with $q$ elements and $PGL(2,q)$ is the projective general linear group of degree $2$ over the finite field with $q$ elements, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信