{"title":"辐射银芽体外增殖过程中茎尖坏死的控制","authors":"P. Morales-Tapia, M. Gambardella","doi":"10.1590/2447-536x.v28i4.2536","DOIUrl":null,"url":null,"abstract":"Abstract Argylia radiata is an herbaceous perennial plant native to northern Chile and a representative species of the “Blooming Desert”. Due to its showy flowers and other morphological characteristics, A. radiata has great ornamental potential. In earlier work, a deep morpho-anatomical description was made, but the micropropagation protocols, which could be used for commercial purposes, are not known. Previous assays showed that cytokinin supplementation improves the multiplication rate but produces shoot-tip necrosis in the microplants. To avoid it, different modifications of the growth medium were tested, including calcium nitrate supplementation; increasing in agar concentration; indole-3-butyric acid enrichment; and change of the basal medium formulation. The effect of these changes over the damage level, number of shoots, multiplication rate, plant height (cm), fresh weight and dry weight (g), and water content (%) of the microplants were evaluated. The use of McCown Woody Plant formulation as basal medium showed the best effect, reducing the damage level and improving the multiplication rate. Additionally, IBA supplementation was effective in reducing necrotic damage. However, 0.1 mg L-1 of IBA significantly decreased the multiplication rate, while 0.01 mg L-1 led to a higher multiplication rate than that of plants grown in the control medium. In conclusion, the use of McCown Woody Plant medium and IBA supplementation should be considered in commercial A. radiata micropropagation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of shoot-tip necrosis during Argylia radiata in vitro multiplication\",\"authors\":\"P. Morales-Tapia, M. Gambardella\",\"doi\":\"10.1590/2447-536x.v28i4.2536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Argylia radiata is an herbaceous perennial plant native to northern Chile and a representative species of the “Blooming Desert”. Due to its showy flowers and other morphological characteristics, A. radiata has great ornamental potential. In earlier work, a deep morpho-anatomical description was made, but the micropropagation protocols, which could be used for commercial purposes, are not known. Previous assays showed that cytokinin supplementation improves the multiplication rate but produces shoot-tip necrosis in the microplants. To avoid it, different modifications of the growth medium were tested, including calcium nitrate supplementation; increasing in agar concentration; indole-3-butyric acid enrichment; and change of the basal medium formulation. The effect of these changes over the damage level, number of shoots, multiplication rate, plant height (cm), fresh weight and dry weight (g), and water content (%) of the microplants were evaluated. The use of McCown Woody Plant formulation as basal medium showed the best effect, reducing the damage level and improving the multiplication rate. Additionally, IBA supplementation was effective in reducing necrotic damage. However, 0.1 mg L-1 of IBA significantly decreased the multiplication rate, while 0.01 mg L-1 led to a higher multiplication rate than that of plants grown in the control medium. In conclusion, the use of McCown Woody Plant medium and IBA supplementation should be considered in commercial A. radiata micropropagation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2447-536x.v28i4.2536\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2447-536x.v28i4.2536","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Control of shoot-tip necrosis during Argylia radiata in vitro multiplication
Abstract Argylia radiata is an herbaceous perennial plant native to northern Chile and a representative species of the “Blooming Desert”. Due to its showy flowers and other morphological characteristics, A. radiata has great ornamental potential. In earlier work, a deep morpho-anatomical description was made, but the micropropagation protocols, which could be used for commercial purposes, are not known. Previous assays showed that cytokinin supplementation improves the multiplication rate but produces shoot-tip necrosis in the microplants. To avoid it, different modifications of the growth medium were tested, including calcium nitrate supplementation; increasing in agar concentration; indole-3-butyric acid enrichment; and change of the basal medium formulation. The effect of these changes over the damage level, number of shoots, multiplication rate, plant height (cm), fresh weight and dry weight (g), and water content (%) of the microplants were evaluated. The use of McCown Woody Plant formulation as basal medium showed the best effect, reducing the damage level and improving the multiplication rate. Additionally, IBA supplementation was effective in reducing necrotic damage. However, 0.1 mg L-1 of IBA significantly decreased the multiplication rate, while 0.01 mg L-1 led to a higher multiplication rate than that of plants grown in the control medium. In conclusion, the use of McCown Woody Plant medium and IBA supplementation should be considered in commercial A. radiata micropropagation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.