{"title":"De Branges–Rovnyak空间的自行车","authors":"E. Fricain, S. Grivaux","doi":"10.2478/mjpaa-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the cyclicity problem with respect to the forward shift operator Sb acting on the de Branges–Rovnyak space ℋ (b) associated to a function b in the closed unit ball of H∞ and satisfying log(1− |b| ∈ L1(𝕋). We present a characterisation of cyclic vectors for Sb when b is a rational function which is not a finite Blaschke product. This characterisation can be derived from the description, given in [22], of invariant subspaces of Sb in this case, but we provide here an elementary proof. We also study the situation where b has the form b = (1+ I)/2, where I is a non-constant inner function such that the associated model space KI = ℋ (I) has an orthonormal basis of reproducing kernels.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"216 - 237"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclicity in de Branges–Rovnyak spaces\",\"authors\":\"E. Fricain, S. Grivaux\",\"doi\":\"10.2478/mjpaa-2023-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the cyclicity problem with respect to the forward shift operator Sb acting on the de Branges–Rovnyak space ℋ (b) associated to a function b in the closed unit ball of H∞ and satisfying log(1− |b| ∈ L1(𝕋). We present a characterisation of cyclic vectors for Sb when b is a rational function which is not a finite Blaschke product. This characterisation can be derived from the description, given in [22], of invariant subspaces of Sb in this case, but we provide here an elementary proof. We also study the situation where b has the form b = (1+ I)/2, where I is a non-constant inner function such that the associated model space KI = ℋ (I) has an orthonormal basis of reproducing kernels.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"9 1\",\"pages\":\"216 - 237\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2023-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文研究了前移算子Sb作用于H∞闭单位球中与函数b相关的de Branges-Rovnyak空间H (b)上且满足log(1−|b|∈L1(交)的循环性问题。给出了当b是非有限Blaschke积的有理函数时Sb的循环向量的刻画。在这种情况下,这个特征可以由在[22]中给出的Sb不变子空间的描述推导出来,但是我们在这里提供一个初等证明。我们还研究了b的形式为b = (1+ I)/2的情况,其中I是一个非常数内函数,使得相关模型空间KI = h (I)具有再现核的标准正交基。
Abstract In this paper, we study the cyclicity problem with respect to the forward shift operator Sb acting on the de Branges–Rovnyak space ℋ (b) associated to a function b in the closed unit ball of H∞ and satisfying log(1− |b| ∈ L1(𝕋). We present a characterisation of cyclic vectors for Sb when b is a rational function which is not a finite Blaschke product. This characterisation can be derived from the description, given in [22], of invariant subspaces of Sb in this case, but we provide here an elementary proof. We also study the situation where b has the form b = (1+ I)/2, where I is a non-constant inner function such that the associated model space KI = ℋ (I) has an orthonormal basis of reproducing kernels.