在球对称树中没有截断

Pub Date : 2021-07-29 DOI:10.1214/22-ecp468
Rafael Chiclana, Y. Peres
{"title":"在球对称树中没有截断","authors":"Rafael Chiclana, Y. Peres","doi":"10.1214/22-ecp468","DOIUrl":null,"url":null,"abstract":". We show that for lazy simple random walks on finite spherically symmetric trees, the ratio of the mixing time and the relaxation time is bounded by a universal constant. Consequently, lazy simple random walks on any sequence of finite spherically symmetric trees do not exhibit pre-cutoff; this conclusion also holds for continuous-time simple random walks. This answers a question recently proposed by Gantert, Nestoridi, and Schmid. We also show that for lazy simple random walks on finite spherically symmetric trees, hitting times of vertices are (uniformly) non concentrated. Finally, we study the stability of our results under rough isometries.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"No cutoff in Spherically symmetric trees\",\"authors\":\"Rafael Chiclana, Y. Peres\",\"doi\":\"10.1214/22-ecp468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We show that for lazy simple random walks on finite spherically symmetric trees, the ratio of the mixing time and the relaxation time is bounded by a universal constant. Consequently, lazy simple random walks on any sequence of finite spherically symmetric trees do not exhibit pre-cutoff; this conclusion also holds for continuous-time simple random walks. This answers a question recently proposed by Gantert, Nestoridi, and Schmid. We also show that for lazy simple random walks on finite spherically symmetric trees, hitting times of vertices are (uniformly) non concentrated. Finally, we study the stability of our results under rough isometries.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ecp468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 我们证明了对于有限球对称树上的惰性简单随机漫步,混合时间和松弛时间的比值有一个普适常数的限定。因此,在任何有限球对称树序列上的惰性简单随机漫步都不表现出预截止;这个结论也适用于连续时间简单随机漫步。这回答了Gantert, Nestoridi和Schmid最近提出的一个问题。我们还证明了对于有限球对称树上的惰性简单随机漫步,顶点的命中时间(均匀地)不集中。最后,我们研究了我们的结果在粗糙等距下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
No cutoff in Spherically symmetric trees
. We show that for lazy simple random walks on finite spherically symmetric trees, the ratio of the mixing time and the relaxation time is bounded by a universal constant. Consequently, lazy simple random walks on any sequence of finite spherically symmetric trees do not exhibit pre-cutoff; this conclusion also holds for continuous-time simple random walks. This answers a question recently proposed by Gantert, Nestoridi, and Schmid. We also show that for lazy simple random walks on finite spherically symmetric trees, hitting times of vertices are (uniformly) non concentrated. Finally, we study the stability of our results under rough isometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信