Ruichen Zhang, Guojun Zhai, S. Bian, Houpu Li, B. Ji
{"title":"b样条函数与傅里叶级数相结合的高精度海底表面建模分析方法","authors":"Ruichen Zhang, Guojun Zhai, S. Bian, Houpu Li, B. Ji","doi":"10.1080/01490419.2022.2091695","DOIUrl":null,"url":null,"abstract":"Abstract High-accuracy seabed surface modelling provides multi-source high-precision fundamental geographic datasets for marine visual computing, seabed topography detection, marine biology, marine engineering and other fields. Proposed in this paper is a high-precision seabed surface model, which combines B-spline functions and Fourier-series, referred to as the Spline-Fourier-series (S-FS) method. Firstly, the mathematical relationship between the B-spline functions and Fourier-series in the modelling process is explored in depth, deducing the non-recursive basis functions of the Spline-Fourier-series model and the specific representation of the two dimensional Spline-Fourier-series model. Furthermore, using a publicly available Large-area bathymetric dataset, extensive experiments are conducted for comparisons with traditional methods (nearest-neighbor, bilinear, bicubic) and traditional Fourier-series, which generally shows the S-FS method has higher accuracy, better convergence and stronger robustness. Finally, based on its mathematically theoretical model, three characteristics (dimensionality reduction, multi-resolution expression and multi-scale visualization) of the S-FS method for constructing high-precision seabed surface are analyzed visually and deeply. Compared with B-spline function, the basic functions of the S-FS method inherit its prioritized compactly-supported performance and do not need to be recursively calculated anymore, thereby further showing its feasibility and extensibility in the field of high-precision seabed surface modelling.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"45 1","pages":"519 - 556"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytical Method for High-Precision Seabed Surface Modelling Combining B-Spline Functions and Fourier Series\",\"authors\":\"Ruichen Zhang, Guojun Zhai, S. Bian, Houpu Li, B. Ji\",\"doi\":\"10.1080/01490419.2022.2091695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract High-accuracy seabed surface modelling provides multi-source high-precision fundamental geographic datasets for marine visual computing, seabed topography detection, marine biology, marine engineering and other fields. Proposed in this paper is a high-precision seabed surface model, which combines B-spline functions and Fourier-series, referred to as the Spline-Fourier-series (S-FS) method. Firstly, the mathematical relationship between the B-spline functions and Fourier-series in the modelling process is explored in depth, deducing the non-recursive basis functions of the Spline-Fourier-series model and the specific representation of the two dimensional Spline-Fourier-series model. Furthermore, using a publicly available Large-area bathymetric dataset, extensive experiments are conducted for comparisons with traditional methods (nearest-neighbor, bilinear, bicubic) and traditional Fourier-series, which generally shows the S-FS method has higher accuracy, better convergence and stronger robustness. Finally, based on its mathematically theoretical model, three characteristics (dimensionality reduction, multi-resolution expression and multi-scale visualization) of the S-FS method for constructing high-precision seabed surface are analyzed visually and deeply. Compared with B-spline function, the basic functions of the S-FS method inherit its prioritized compactly-supported performance and do not need to be recursively calculated anymore, thereby further showing its feasibility and extensibility in the field of high-precision seabed surface modelling.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":\"45 1\",\"pages\":\"519 - 556\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2022.2091695\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2091695","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Analytical Method for High-Precision Seabed Surface Modelling Combining B-Spline Functions and Fourier Series
Abstract High-accuracy seabed surface modelling provides multi-source high-precision fundamental geographic datasets for marine visual computing, seabed topography detection, marine biology, marine engineering and other fields. Proposed in this paper is a high-precision seabed surface model, which combines B-spline functions and Fourier-series, referred to as the Spline-Fourier-series (S-FS) method. Firstly, the mathematical relationship between the B-spline functions and Fourier-series in the modelling process is explored in depth, deducing the non-recursive basis functions of the Spline-Fourier-series model and the specific representation of the two dimensional Spline-Fourier-series model. Furthermore, using a publicly available Large-area bathymetric dataset, extensive experiments are conducted for comparisons with traditional methods (nearest-neighbor, bilinear, bicubic) and traditional Fourier-series, which generally shows the S-FS method has higher accuracy, better convergence and stronger robustness. Finally, based on its mathematically theoretical model, three characteristics (dimensionality reduction, multi-resolution expression and multi-scale visualization) of the S-FS method for constructing high-precision seabed surface are analyzed visually and deeply. Compared with B-spline function, the basic functions of the S-FS method inherit its prioritized compactly-supported performance and do not need to be recursively calculated anymore, thereby further showing its feasibility and extensibility in the field of high-precision seabed surface modelling.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.