{"title":"斐波那契数是两个雅各布数的乘积","authors":"F. Erduvan, R. Keskin","doi":"10.32513/tmj/19322008126","DOIUrl":null,"url":null,"abstract":"In this paper, we find all Fibonacci numbers which are products of two Jacobsthal numbers. Also we find all Jacobsthal numbers which are products of two Fibonacci numbers. More generally, taking $k,m,n$ as positive integers, it is proved that $F_{k}=J_{m}J_{n}$ implies that \\begin{align*} (k,m,n) = &(1,1,1),(2,1,1),(1,1,2),(2,1,2),\\\\ & (1,2,2),(2,2,2),(4,1,3),(4,2,3),\\\\ & (5,1,4),(5,2,4),(10,4,5),(8,1,6),(8,2,6) \\end{align*} and $J_{k}=F_{m}F_{n}$ implies that \\begin{align*} (k,m,n) =&(1,1,1),(2,1,1),(1,2,1),(2,2,1),\\\\ & (1,2,2),(2,2,2),(3,4,1),(3,4,2),\\\\ & (4,5,1),(4,5,2),(6,8,1),(6,8,2). \\end{align*}","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fibonacci numbers which are products of two Jacobsthal numbers\",\"authors\":\"F. Erduvan, R. Keskin\",\"doi\":\"10.32513/tmj/19322008126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we find all Fibonacci numbers which are products of two Jacobsthal numbers. Also we find all Jacobsthal numbers which are products of two Fibonacci numbers. More generally, taking $k,m,n$ as positive integers, it is proved that $F_{k}=J_{m}J_{n}$ implies that \\\\begin{align*} (k,m,n) = &(1,1,1),(2,1,1),(1,1,2),(2,1,2),\\\\\\\\ & (1,2,2),(2,2,2),(4,1,3),(4,2,3),\\\\\\\\ & (5,1,4),(5,2,4),(10,4,5),(8,1,6),(8,2,6) \\\\end{align*} and $J_{k}=F_{m}F_{n}$ implies that \\\\begin{align*} (k,m,n) =&(1,1,1),(2,1,1),(1,2,1),(2,2,1),\\\\\\\\ & (1,2,2),(2,2,2),(3,4,1),(3,4,2),\\\\\\\\ & (4,5,1),(4,5,2),(6,8,1),(6,8,2). \\\\end{align*}\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tmj/19322008126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fibonacci numbers which are products of two Jacobsthal numbers
In this paper, we find all Fibonacci numbers which are products of two Jacobsthal numbers. Also we find all Jacobsthal numbers which are products of two Fibonacci numbers. More generally, taking $k,m,n$ as positive integers, it is proved that $F_{k}=J_{m}J_{n}$ implies that \begin{align*} (k,m,n) = &(1,1,1),(2,1,1),(1,1,2),(2,1,2),\\ & (1,2,2),(2,2,2),(4,1,3),(4,2,3),\\ & (5,1,4),(5,2,4),(10,4,5),(8,1,6),(8,2,6) \end{align*} and $J_{k}=F_{m}F_{n}$ implies that \begin{align*} (k,m,n) =&(1,1,1),(2,1,1),(1,2,1),(2,2,1),\\ & (1,2,2),(2,2,2),(3,4,1),(3,4,2),\\ & (4,5,1),(4,5,2),(6,8,1),(6,8,2). \end{align*}