斐波那契数是两个雅各布数的乘积

IF 0.7 Q2 MATHEMATICS
F. Erduvan, R. Keskin
{"title":"斐波那契数是两个雅各布数的乘积","authors":"F. Erduvan, R. Keskin","doi":"10.32513/tmj/19322008126","DOIUrl":null,"url":null,"abstract":"In this paper, we find all Fibonacci numbers which are products of two Jacobsthal numbers. Also we find all Jacobsthal numbers which are products of two Fibonacci numbers. More generally, taking $k,m,n$ as positive integers, it is proved that $F_{k}=J_{m}J_{n}$ implies that \\begin{align*} (k,m,n) = &(1,1,1),(2,1,1),(1,1,2),(2,1,2),\\\\ & (1,2,2),(2,2,2),(4,1,3),(4,2,3),\\\\ & (5,1,4),(5,2,4),(10,4,5),(8,1,6),(8,2,6) \\end{align*} and $J_{k}=F_{m}F_{n}$ implies that \\begin{align*} (k,m,n) =&(1,1,1),(2,1,1),(1,2,1),(2,2,1),\\\\ & (1,2,2),(2,2,2),(3,4,1),(3,4,2),\\\\ & (4,5,1),(4,5,2),(6,8,1),(6,8,2). \\end{align*}","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fibonacci numbers which are products of two Jacobsthal numbers\",\"authors\":\"F. Erduvan, R. Keskin\",\"doi\":\"10.32513/tmj/19322008126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we find all Fibonacci numbers which are products of two Jacobsthal numbers. Also we find all Jacobsthal numbers which are products of two Fibonacci numbers. More generally, taking $k,m,n$ as positive integers, it is proved that $F_{k}=J_{m}J_{n}$ implies that \\\\begin{align*} (k,m,n) = &(1,1,1),(2,1,1),(1,1,2),(2,1,2),\\\\\\\\ & (1,2,2),(2,2,2),(4,1,3),(4,2,3),\\\\\\\\ & (5,1,4),(5,2,4),(10,4,5),(8,1,6),(8,2,6) \\\\end{align*} and $J_{k}=F_{m}F_{n}$ implies that \\\\begin{align*} (k,m,n) =&(1,1,1),(2,1,1),(1,2,1),(2,2,1),\\\\\\\\ & (1,2,2),(2,2,2),(3,4,1),(3,4,2),\\\\\\\\ & (4,5,1),(4,5,2),(6,8,1),(6,8,2). \\\\end{align*}\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tmj/19322008126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们找到了所有的Fibonacci数,它们是两个Jacobthal数的乘积。我们还找到了所有的Jacobthal数,它们是两个Fibonacci数的乘积。更一般地说,以$k,m,n$为正整数,证明了$F_{k}=J_{m}J_{n} $表示\ begin{align*}(k,m,n)=&(1,1,1),(2,1,1),(1,1,2_{m}F_{n} $表示\ begin{align*}(k,m,n)=&(1,1,1),(2,1,1),(1,2,1。\结束{align*}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fibonacci numbers which are products of two Jacobsthal numbers
In this paper, we find all Fibonacci numbers which are products of two Jacobsthal numbers. Also we find all Jacobsthal numbers which are products of two Fibonacci numbers. More generally, taking $k,m,n$ as positive integers, it is proved that $F_{k}=J_{m}J_{n}$ implies that \begin{align*} (k,m,n) = &(1,1,1),(2,1,1),(1,1,2),(2,1,2),\\ & (1,2,2),(2,2,2),(4,1,3),(4,2,3),\\ & (5,1,4),(5,2,4),(10,4,5),(8,1,6),(8,2,6) \end{align*} and $J_{k}=F_{m}F_{n}$ implies that \begin{align*} (k,m,n) =&(1,1,1),(2,1,1),(1,2,1),(2,2,1),\\ & (1,2,2),(2,2,2),(3,4,1),(3,4,2),\\ & (4,5,1),(4,5,2),(6,8,1),(6,8,2). \end{align*}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信