Barndorff–Nielsen和Shephard模型的基于深度学习的期权定价

IF 0.6 Q4 BUSINESS, FINANCE
Takuji Arai
{"title":"Barndorff–Nielsen和Shephard模型的基于深度学习的期权定价","authors":"Takuji Arai","doi":"10.1142/s2424786323500159","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a deep learning-based numerical method for option prices for the Barndorff–Nielsen and Shephard model, a representative jump-type stochastic volatility model. Using that option prices for the Barndorff–Nielsen and Shephard model satisfy a partial-integro differential equation, we will develop an effective numerical calculation method even in settings where conventional numerical methods are unavailable. In addition, we will implement some numerical experiments.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep learning-based option pricing for Barndorff–Nielsen and Shephard model\",\"authors\":\"Takuji Arai\",\"doi\":\"10.1142/s2424786323500159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to develop a deep learning-based numerical method for option prices for the Barndorff–Nielsen and Shephard model, a representative jump-type stochastic volatility model. Using that option prices for the Barndorff–Nielsen and Shephard model satisfy a partial-integro differential equation, we will develop an effective numerical calculation method even in settings where conventional numerical methods are unavailable. In addition, we will implement some numerical experiments.\",\"PeriodicalId\":54088,\"journal\":{\"name\":\"International Journal of Financial Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Financial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424786323500159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424786323500159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在为具有代表性的跳跃型随机波动率模型Barndorff–Nielsen和Shephard模型开发一种基于深度学习的期权价格数值方法。使用Barndorff–Nielsen和Shephard模型的期权价格满足偏积分微分方程,我们将开发一种有效的数值计算方法,即使在传统数值方法不可用的情况下也是如此。此外,我们还将进行一些数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based option pricing for Barndorff–Nielsen and Shephard model
This paper aims to develop a deep learning-based numerical method for option prices for the Barndorff–Nielsen and Shephard model, a representative jump-type stochastic volatility model. Using that option prices for the Barndorff–Nielsen and Shephard model satisfy a partial-integro differential equation, we will develop an effective numerical calculation method even in settings where conventional numerical methods are unavailable. In addition, we will implement some numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信