{"title":"辛群上积分权和半积分权JACOBI形式的RANKIN-SELBERG方法","authors":"S. Hayashida","doi":"10.2206/kyushujm.73.391","DOIUrl":null,"url":null,"abstract":"In this article we show analytic properties of certain Rankin-Selberg type Dirichlet series for holomorphic Jacobi cusp forms of integral weight and of half-integral weight. The numerators of these Dirichlet series are the inner products of Fourier-Jacobi coefficients of two Jacobi cusp forms. The denominators and the range of summation of these Dirichlet series are like the ones of the Koecher-Maass series. The meromorphic continuations and functional equations of these Dirichlet series are obtained. Moreover, an identity between the Petersson norms of Jacobi forms with respect to linear isomorphism between Jacobi forms of integral weight and half-integral weight is also obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RANKIN-SELBERG METHOD FOR JACOBI FORMS OF INTEGRAL WEIGHT AND OF HALF-INTEGRAL WEIGHT ON SYMPLECTIC GROUPS\",\"authors\":\"S. Hayashida\",\"doi\":\"10.2206/kyushujm.73.391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we show analytic properties of certain Rankin-Selberg type Dirichlet series for holomorphic Jacobi cusp forms of integral weight and of half-integral weight. The numerators of these Dirichlet series are the inner products of Fourier-Jacobi coefficients of two Jacobi cusp forms. The denominators and the range of summation of these Dirichlet series are like the ones of the Koecher-Maass series. The meromorphic continuations and functional equations of these Dirichlet series are obtained. Moreover, an identity between the Petersson norms of Jacobi forms with respect to linear isomorphism between Jacobi forms of integral weight and half-integral weight is also obtained.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RANKIN-SELBERG METHOD FOR JACOBI FORMS OF INTEGRAL WEIGHT AND OF HALF-INTEGRAL WEIGHT ON SYMPLECTIC GROUPS
In this article we show analytic properties of certain Rankin-Selberg type Dirichlet series for holomorphic Jacobi cusp forms of integral weight and of half-integral weight. The numerators of these Dirichlet series are the inner products of Fourier-Jacobi coefficients of two Jacobi cusp forms. The denominators and the range of summation of these Dirichlet series are like the ones of the Koecher-Maass series. The meromorphic continuations and functional equations of these Dirichlet series are obtained. Moreover, an identity between the Petersson norms of Jacobi forms with respect to linear isomorphism between Jacobi forms of integral weight and half-integral weight is also obtained.