{"title":"金催化取代1,5-二炔的反应及其化学研究进展","authors":"Suneel Kanaparthy, Bharath Kumar Perla, Damodar Kongara","doi":"10.2174/1570193x20666230302114722","DOIUrl":null,"url":null,"abstract":"\n\nDiynes are identified as exceptionally potent and superior substrates in gold-catalyzed organic transformations. Gold (I) and gold (III) complexes exhibit unique activity towards diynes, encouraging the nucleophilic addition of different functional groups both inter and intra- molecularly. In this review, particularly, we focused on recent advances in gold-catalyzed reactions of 1,5-diynes along with their mechanistic aspects. These reactions are interesting for constructing molecular complexity, medicinal chemistry, and material science.\n","PeriodicalId":18632,"journal":{"name":"Mini-reviews in Organic Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gold-catalyzed reactions of substituted 1,5-diynes: recent advances and their chemistry\",\"authors\":\"Suneel Kanaparthy, Bharath Kumar Perla, Damodar Kongara\",\"doi\":\"10.2174/1570193x20666230302114722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nDiynes are identified as exceptionally potent and superior substrates in gold-catalyzed organic transformations. Gold (I) and gold (III) complexes exhibit unique activity towards diynes, encouraging the nucleophilic addition of different functional groups both inter and intra- molecularly. In this review, particularly, we focused on recent advances in gold-catalyzed reactions of 1,5-diynes along with their mechanistic aspects. These reactions are interesting for constructing molecular complexity, medicinal chemistry, and material science.\\n\",\"PeriodicalId\":18632,\"journal\":{\"name\":\"Mini-reviews in Organic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mini-reviews in Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570193x20666230302114722\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini-reviews in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570193x20666230302114722","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Gold-catalyzed reactions of substituted 1,5-diynes: recent advances and their chemistry
Diynes are identified as exceptionally potent and superior substrates in gold-catalyzed organic transformations. Gold (I) and gold (III) complexes exhibit unique activity towards diynes, encouraging the nucleophilic addition of different functional groups both inter and intra- molecularly. In this review, particularly, we focused on recent advances in gold-catalyzed reactions of 1,5-diynes along with their mechanistic aspects. These reactions are interesting for constructing molecular complexity, medicinal chemistry, and material science.
期刊介绍:
Mini-Reviews in Organic Chemistry is a peer reviewed journal which publishes original reviews on all areas of organic chemistry including organic synthesis, bioorganic and medicinal chemistry, natural product chemistry, molecular recognition, and physical organic chemistry. The emphasis will be on publishing quality papers very rapidly, without any charges.
The journal encourages submission of reviews on emerging fields of organic chemistry including:
Bioorganic Chemistry
Carbohydrate Chemistry
Chemical Biology
Chemical Process Research
Computational Organic Chemistry
Development of Synthetic Methodologies
Functional Organic Materials
Heterocyclic Chemistry
Macromolecular Chemistry
Natural Products Isolation And Synthesis
New Synthetic Methodology
Organic Reactions
Organocatalysis
Organometallic Chemistry
Theoretical Organic Chemistry
Polymer Chemistry
Stereochemistry
Structural Investigations
Supramolecular Chemistry