{"title":"接触多物理:一种通过设计增强材料制造的SPS新范式","authors":"G. Maizza","doi":"10.19080/JOJMS.2017.03.555615","DOIUrl":null,"url":null,"abstract":"Spark Plasma Sintering (SPS) is used extensively to fabricate a wide range of monolithic and advanced materials over a short time and at low temperatures which show inherent advantages over conventional hot-pressed materials. However, the presence of uncontrolled microstructure inhomogeneities, especially in relatively large SPS samples, greatly limits the successful transfer of this technology to an industrial process. The intricate complexity of the involved SPS phenomena, the nebulous role of contacts and the tight physical coupling between the powder and the device are the main concerns. This work has three aims: a) to introduce the concept of contact multiphysics in SPS: b) to illustrate that the current issues can be framed within the unifying concept of contact multiphysics: c) to point out that an in-depth understanding of contact multiphysics will contribute significantly to the shedding of the light on SPS phenomena, in order to solve the current limitations of SPS technology and to enable the desired SPS fabrication of materials by design.","PeriodicalId":87320,"journal":{"name":"Juniper online journal material science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Multiphysics: A New SPS Paradigm to Enhance Material Fabrication by Design\",\"authors\":\"G. Maizza\",\"doi\":\"10.19080/JOJMS.2017.03.555615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spark Plasma Sintering (SPS) is used extensively to fabricate a wide range of monolithic and advanced materials over a short time and at low temperatures which show inherent advantages over conventional hot-pressed materials. However, the presence of uncontrolled microstructure inhomogeneities, especially in relatively large SPS samples, greatly limits the successful transfer of this technology to an industrial process. The intricate complexity of the involved SPS phenomena, the nebulous role of contacts and the tight physical coupling between the powder and the device are the main concerns. This work has three aims: a) to introduce the concept of contact multiphysics in SPS: b) to illustrate that the current issues can be framed within the unifying concept of contact multiphysics: c) to point out that an in-depth understanding of contact multiphysics will contribute significantly to the shedding of the light on SPS phenomena, in order to solve the current limitations of SPS technology and to enable the desired SPS fabrication of materials by design.\",\"PeriodicalId\":87320,\"journal\":{\"name\":\"Juniper online journal material science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Juniper online journal material science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/JOJMS.2017.03.555615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Juniper online journal material science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/JOJMS.2017.03.555615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contact Multiphysics: A New SPS Paradigm to Enhance Material Fabrication by Design
Spark Plasma Sintering (SPS) is used extensively to fabricate a wide range of monolithic and advanced materials over a short time and at low temperatures which show inherent advantages over conventional hot-pressed materials. However, the presence of uncontrolled microstructure inhomogeneities, especially in relatively large SPS samples, greatly limits the successful transfer of this technology to an industrial process. The intricate complexity of the involved SPS phenomena, the nebulous role of contacts and the tight physical coupling between the powder and the device are the main concerns. This work has three aims: a) to introduce the concept of contact multiphysics in SPS: b) to illustrate that the current issues can be framed within the unifying concept of contact multiphysics: c) to point out that an in-depth understanding of contact multiphysics will contribute significantly to the shedding of the light on SPS phenomena, in order to solve the current limitations of SPS technology and to enable the desired SPS fabrication of materials by design.