素数幂模的经典Kloosterman和的短和分布

Q4 Mathematics
G. Ricotta
{"title":"素数幂模的经典Kloosterman和的短和分布","authors":"G. Ricotta","doi":"10.5802/ambp.385","DOIUrl":null,"url":null,"abstract":"Corentin Perret-Gentil proved, under some very general conditions, that short sums of $\\ell$-adic trace functions over finite fields of varying center converges in law to a Gaussian random variable or vector. The main inputs are P.~Deligne's equidistribution theorem, N.~Katz' works and the results surveyed in \\cite{MR3338119}. In particular, this applies to $2$-dimensional Kloosterman sums $\\mathsf{Kl}_{2,\\mathbb{F}_q}$ studied by N.~Katz in \\cite{MR955052} and in \\cite{MR1081536} when the field $\\mathbb{F}_q$ gets large. \\par This article considers the case of short sums of normalized classical Kloosterman sums of prime powers moduli $\\mathsf{Kl}_{p^n}$, as $p$ tends to infinity among the prime numbers and $n\\geq 2$ is a fixed integer. A convergence in law towards a real-valued standard Gaussian random variable is proved under some very natural conditions.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of short sums of classical Kloosterman sums of prime powers moduli\",\"authors\":\"G. Ricotta\",\"doi\":\"10.5802/ambp.385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corentin Perret-Gentil proved, under some very general conditions, that short sums of $\\\\ell$-adic trace functions over finite fields of varying center converges in law to a Gaussian random variable or vector. The main inputs are P.~Deligne's equidistribution theorem, N.~Katz' works and the results surveyed in \\\\cite{MR3338119}. In particular, this applies to $2$-dimensional Kloosterman sums $\\\\mathsf{Kl}_{2,\\\\mathbb{F}_q}$ studied by N.~Katz in \\\\cite{MR955052} and in \\\\cite{MR1081536} when the field $\\\\mathbb{F}_q$ gets large. \\\\par This article considers the case of short sums of normalized classical Kloosterman sums of prime powers moduli $\\\\mathsf{Kl}_{p^n}$, as $p$ tends to infinity among the prime numbers and $n\\\\geq 2$ is a fixed integer. A convergence in law towards a real-valued standard Gaussian random variable is proved under some very natural conditions.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

Corentin-Perret Gentil在一些非常一般的条件下证明了变中心有限域上$\ell$adic迹函数的短和在定律上收敛于高斯随机变量或向量。主要输入是P.~Deligne的等分布定理、N.~Katz的工作以及在{MR3338119}中调查的结果。特别是,这适用于$2$dimensional Kloosterman sums$\mathsf{Kl}_{2,\mathbb{F}_q}N.~Katz在\cite{MR955052}和\cite{MR1081536}中研究的$,当字段$\mathbb{F}_q美元变得很大。\par本文考虑素数幂模$\mathsf的归一化经典Kloosterman和的短和的情况{Kl}_{p^n}$,因为$p$在素数中趋于无穷大,并且$n\geq2$是一个固定整数。在一些非常自然的条件下,证明了定律向实值标准高斯随机变量的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of short sums of classical Kloosterman sums of prime powers moduli
Corentin Perret-Gentil proved, under some very general conditions, that short sums of $\ell$-adic trace functions over finite fields of varying center converges in law to a Gaussian random variable or vector. The main inputs are P.~Deligne's equidistribution theorem, N.~Katz' works and the results surveyed in \cite{MR3338119}. In particular, this applies to $2$-dimensional Kloosterman sums $\mathsf{Kl}_{2,\mathbb{F}_q}$ studied by N.~Katz in \cite{MR955052} and in \cite{MR1081536} when the field $\mathbb{F}_q$ gets large. \par This article considers the case of short sums of normalized classical Kloosterman sums of prime powers moduli $\mathsf{Kl}_{p^n}$, as $p$ tends to infinity among the prime numbers and $n\geq 2$ is a fixed integer. A convergence in law towards a real-valued standard Gaussian random variable is proved under some very natural conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信