保利-莱昂纳多四元数

IF 0.4 Q4 MATHEMATICS
Zehra İşbilir, M. Akyiğit, M. Tosun
{"title":"保利-莱昂纳多四元数","authors":"Zehra İşbilir, M. Akyiğit, M. Tosun","doi":"10.7546/nntdm.2023.29.1.1-16","DOIUrl":null,"url":null,"abstract":"In this study, we define Pauli–Leonardo quaternions by taking the coefficients of the Pauli quaternions as Leonardo numbers. We give the recurrence relation, Binet formula, generating function, exponential generating function, some special equalities, and the sum properties of these novel quaternions. In addition, we investigate the interrelations between Pauli–Leonardo quaternions and the Pauli–Fibonacci, Pauli–Lucas quaternions. Moreover, we create some algorithms that determine the terms of the Pauli–Leonardo quaternions. Finally, we generate the matrix representations of the Pauli–Leonardo quaternions and ℝ-linear transformations.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pauli–Leonardo quaternions\",\"authors\":\"Zehra İşbilir, M. Akyiğit, M. Tosun\",\"doi\":\"10.7546/nntdm.2023.29.1.1-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we define Pauli–Leonardo quaternions by taking the coefficients of the Pauli quaternions as Leonardo numbers. We give the recurrence relation, Binet formula, generating function, exponential generating function, some special equalities, and the sum properties of these novel quaternions. In addition, we investigate the interrelations between Pauli–Leonardo quaternions and the Pauli–Fibonacci, Pauli–Lucas quaternions. Moreover, we create some algorithms that determine the terms of the Pauli–Leonardo quaternions. Finally, we generate the matrix representations of the Pauli–Leonardo quaternions and ℝ-linear transformations.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.1.1-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.1.1-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们通过将泡利四元数的系数作为Leonardo数来定义泡利-Leonardo四元数。我们给出了这些新四元数的递推关系、Binet公式、生成函数、指数生成函数、一些特殊的等式以及它们的和性质。此外,我们还研究了泡利-莱昂纳多四元数与泡利-斐波那契、泡利-卢卡斯四元数之间的相互关系。此外,我们还创建了一些算法来确定保利-莱昂纳多四元数的项。最后,我们生成了Pauli–Leonardo四元数的矩阵表示ℝ-线性变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pauli–Leonardo quaternions
In this study, we define Pauli–Leonardo quaternions by taking the coefficients of the Pauli quaternions as Leonardo numbers. We give the recurrence relation, Binet formula, generating function, exponential generating function, some special equalities, and the sum properties of these novel quaternions. In addition, we investigate the interrelations between Pauli–Leonardo quaternions and the Pauli–Fibonacci, Pauli–Lucas quaternions. Moreover, we create some algorithms that determine the terms of the Pauli–Leonardo quaternions. Finally, we generate the matrix representations of the Pauli–Leonardo quaternions and ℝ-linear transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信