{"title":"气象站的空间密度对分布式和集中水文模型性能的影响","authors":"J. Martel, F. Brissette, Annie Poulin","doi":"10.1080/07011784.2020.1729241","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to quantify the ability of distributed and lumped hydrological models to use high-resolution precipitation and temperature data to improve streamflow simulation at watershed outlets. To that end, a 40-year, high-resolution, spatially distributed, meteorological dataset was extracted from a 15-km resolution regional climate model simulation (from the Canadian Regional Climate Model – CRCM v.4.2.4 driven by ERA40 reanalysis). This dataset was used to feed one distributed and four lumped hydrological models. The five models were calibrated on 192 watersheds located in the province of Quebec (Canada) using five different meteorological network densities of pseudo-stations. These densities ranged from one single station (located at the centre of gravity of the watershed) up to the maximum grid density of 1 station per 225 km2 (15 km × 15 km which corresponds to the CRCM spatial resolution). No significant decrease in validation performance for both types of hydrological models was observed when using any of the tested station densities. Similar results were also obtained when investigating the subsets of 54 smaller (≤2,500 km2) and 84 medium-sized (2,500 < area <10,000 km2) watersheds. However, for the 54 larger watersheds (≥10,000 km2), the decrease in performance was statistically significant for the distributed model when using one single station. While all lumped models showed a noticeable drop in performance only when using a single station, the distributed model was the only model to show a gradual decrease in performance as the network density decreased. These results indicate that when dealing with large watersheds, distributed models could benefit up to some extent from a larger meteorological network density. These conclusions are likely to be relevant to Canadian watersheds with similar physiographic characteristics and hydroclimatic conditions as the ones included in the Quebec database that was studied.","PeriodicalId":55278,"journal":{"name":"Canadian Water Resources Journal","volume":"45 1","pages":"158 - 171"},"PeriodicalIF":1.7000,"publicationDate":"2020-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2020.1729241","citationCount":"5","resultStr":"{\"title\":\"Impact of the spatial density of weather stations on the performance of distributed and lumped hydrological models\",\"authors\":\"J. Martel, F. Brissette, Annie Poulin\",\"doi\":\"10.1080/07011784.2020.1729241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aimed to quantify the ability of distributed and lumped hydrological models to use high-resolution precipitation and temperature data to improve streamflow simulation at watershed outlets. To that end, a 40-year, high-resolution, spatially distributed, meteorological dataset was extracted from a 15-km resolution regional climate model simulation (from the Canadian Regional Climate Model – CRCM v.4.2.4 driven by ERA40 reanalysis). This dataset was used to feed one distributed and four lumped hydrological models. The five models were calibrated on 192 watersheds located in the province of Quebec (Canada) using five different meteorological network densities of pseudo-stations. These densities ranged from one single station (located at the centre of gravity of the watershed) up to the maximum grid density of 1 station per 225 km2 (15 km × 15 km which corresponds to the CRCM spatial resolution). No significant decrease in validation performance for both types of hydrological models was observed when using any of the tested station densities. Similar results were also obtained when investigating the subsets of 54 smaller (≤2,500 km2) and 84 medium-sized (2,500 < area <10,000 km2) watersheds. However, for the 54 larger watersheds (≥10,000 km2), the decrease in performance was statistically significant for the distributed model when using one single station. While all lumped models showed a noticeable drop in performance only when using a single station, the distributed model was the only model to show a gradual decrease in performance as the network density decreased. These results indicate that when dealing with large watersheds, distributed models could benefit up to some extent from a larger meteorological network density. These conclusions are likely to be relevant to Canadian watersheds with similar physiographic characteristics and hydroclimatic conditions as the ones included in the Quebec database that was studied.\",\"PeriodicalId\":55278,\"journal\":{\"name\":\"Canadian Water Resources Journal\",\"volume\":\"45 1\",\"pages\":\"158 - 171\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07011784.2020.1729241\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Water Resources Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/07011784.2020.1729241\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Water Resources Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2020.1729241","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Impact of the spatial density of weather stations on the performance of distributed and lumped hydrological models
Abstract This study aimed to quantify the ability of distributed and lumped hydrological models to use high-resolution precipitation and temperature data to improve streamflow simulation at watershed outlets. To that end, a 40-year, high-resolution, spatially distributed, meteorological dataset was extracted from a 15-km resolution regional climate model simulation (from the Canadian Regional Climate Model – CRCM v.4.2.4 driven by ERA40 reanalysis). This dataset was used to feed one distributed and four lumped hydrological models. The five models were calibrated on 192 watersheds located in the province of Quebec (Canada) using five different meteorological network densities of pseudo-stations. These densities ranged from one single station (located at the centre of gravity of the watershed) up to the maximum grid density of 1 station per 225 km2 (15 km × 15 km which corresponds to the CRCM spatial resolution). No significant decrease in validation performance for both types of hydrological models was observed when using any of the tested station densities. Similar results were also obtained when investigating the subsets of 54 smaller (≤2,500 km2) and 84 medium-sized (2,500 < area <10,000 km2) watersheds. However, for the 54 larger watersheds (≥10,000 km2), the decrease in performance was statistically significant for the distributed model when using one single station. While all lumped models showed a noticeable drop in performance only when using a single station, the distributed model was the only model to show a gradual decrease in performance as the network density decreased. These results indicate that when dealing with large watersheds, distributed models could benefit up to some extent from a larger meteorological network density. These conclusions are likely to be relevant to Canadian watersheds with similar physiographic characteristics and hydroclimatic conditions as the ones included in the Quebec database that was studied.
期刊介绍:
The Canadian Water Resources Journal accepts manuscripts in English or French and publishes abstracts in both official languages. Preference is given to manuscripts focusing on science and policy aspects of Canadian water management. Specifically, manuscripts should stimulate public awareness and understanding of Canada''s water resources, encourage recognition of the high priority of water as a resource, and provide new or increased knowledge on some aspect of Canada''s water.
The Canadian Water Resources Journal was first published in the fall of 1976 and it has grown in stature to be recognized as a quality and important publication in the water resources field.