{"title":"对称层状复合材料在不同载荷条件下的有效力学特性","authors":"A. Lysenko, L. Parshina, B. Yartsev","doi":"10.24937/2542-2324-2022-1-399-75-88","DOIUrl":null,"url":null,"abstract":"Object and purpose of research. This paper discusses balanced and quasi-isotropic (in the reinforcement plane) symmetric layered composite structures made up by the layers of clotheinforced GRP. The purpose of this work was to demonstrate the necessity to justify the applicability of experimental results for effective mechanical parameters determined in the conditions of uniaxial tension/compression to the calculation of thin-walled layered composite structures that work in bending/twisting conditions. Materials and methods. The straining of layered composite structures is simulated as per the updated theory of first-order plates, the model of complex moduli and the principle of elastic-viscoelastic correspondence in linear viscoelasticity theory. Limit state predictions are based on Tsai-Wu tensor-polynomial strength criterion. Main results. This paper suggests the expressions that predict effective elastic constants, dissipation properties and strength limits for symmetric layered structures under investigation. The study shows that balanced symmetric structure made up by four layers of composite may be regarded, with the accuracy sufficient for engineering calculations, as an ortho-tropic material for all loading conditions. At the same time, symmetric quasi-isotropic (in the reinforcement plane) structure made up by thirty two composite layers must be regarded as orthotropic in case of tension/compression and monoclinic in case of bending/twisting. Conclusion. The study has shown the necessity to justify the application of experimental effective mechanical properties for uniaxial tension/compression to calculation of thin-walled layered composite structures exposed to bending/twisting.","PeriodicalId":33210,"journal":{"name":"Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective mechanical characteristics of symmetric layered composite in different loading conditions\",\"authors\":\"A. Lysenko, L. Parshina, B. Yartsev\",\"doi\":\"10.24937/2542-2324-2022-1-399-75-88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object and purpose of research. This paper discusses balanced and quasi-isotropic (in the reinforcement plane) symmetric layered composite structures made up by the layers of clotheinforced GRP. The purpose of this work was to demonstrate the necessity to justify the applicability of experimental results for effective mechanical parameters determined in the conditions of uniaxial tension/compression to the calculation of thin-walled layered composite structures that work in bending/twisting conditions. Materials and methods. The straining of layered composite structures is simulated as per the updated theory of first-order plates, the model of complex moduli and the principle of elastic-viscoelastic correspondence in linear viscoelasticity theory. Limit state predictions are based on Tsai-Wu tensor-polynomial strength criterion. Main results. This paper suggests the expressions that predict effective elastic constants, dissipation properties and strength limits for symmetric layered structures under investigation. The study shows that balanced symmetric structure made up by four layers of composite may be regarded, with the accuracy sufficient for engineering calculations, as an ortho-tropic material for all loading conditions. At the same time, symmetric quasi-isotropic (in the reinforcement plane) structure made up by thirty two composite layers must be regarded as orthotropic in case of tension/compression and monoclinic in case of bending/twisting. Conclusion. The study has shown the necessity to justify the application of experimental effective mechanical properties for uniaxial tension/compression to calculation of thin-walled layered composite structures exposed to bending/twisting.\",\"PeriodicalId\":33210,\"journal\":{\"name\":\"Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24937/2542-2324-2022-1-399-75-88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24937/2542-2324-2022-1-399-75-88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective mechanical characteristics of symmetric layered composite in different loading conditions
Object and purpose of research. This paper discusses balanced and quasi-isotropic (in the reinforcement plane) symmetric layered composite structures made up by the layers of clotheinforced GRP. The purpose of this work was to demonstrate the necessity to justify the applicability of experimental results for effective mechanical parameters determined in the conditions of uniaxial tension/compression to the calculation of thin-walled layered composite structures that work in bending/twisting conditions. Materials and methods. The straining of layered composite structures is simulated as per the updated theory of first-order plates, the model of complex moduli and the principle of elastic-viscoelastic correspondence in linear viscoelasticity theory. Limit state predictions are based on Tsai-Wu tensor-polynomial strength criterion. Main results. This paper suggests the expressions that predict effective elastic constants, dissipation properties and strength limits for symmetric layered structures under investigation. The study shows that balanced symmetric structure made up by four layers of composite may be regarded, with the accuracy sufficient for engineering calculations, as an ortho-tropic material for all loading conditions. At the same time, symmetric quasi-isotropic (in the reinforcement plane) structure made up by thirty two composite layers must be regarded as orthotropic in case of tension/compression and monoclinic in case of bending/twisting. Conclusion. The study has shown the necessity to justify the application of experimental effective mechanical properties for uniaxial tension/compression to calculation of thin-walled layered composite structures exposed to bending/twisting.