遥感图像处理的协作跨域$k$NN搜索

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ying Zhong, Wei Weng, Jianmin Li, Shunzhi Zhu
{"title":"遥感图像处理的协作跨域$k$NN搜索","authors":"Ying Zhong, Wei Weng, Jianmin Li, Shunzhi Zhu","doi":"10.1109/LGRS.2019.2906686","DOIUrl":null,"url":null,"abstract":"<inline-formula> <tex-math notation=\"LaTeX\">$k$ </tex-math></inline-formula>NN search is a fundamental function in image processing, which is useful in many real applications, including image cluster, image classification, and image understanding and analysis in general. In this light, we propose and study a novel collaborative cross-domain <inline-formula> <tex-math notation=\"LaTeX\">$k$ </tex-math></inline-formula>NN search (CD-<inline-formula> <tex-math notation=\"LaTeX\">$k$ </tex-math></inline-formula>NN) in multidomain space. Given a query location <inline-formula> <tex-math notation=\"LaTeX\">$q$ </tex-math></inline-formula> in a multidomain space (e.g., spatial domain, temporal domain, textual domain, and so on), the CD-<inline-formula> <tex-math notation=\"LaTeX\">$k$ </tex-math></inline-formula>NN finds top-<inline-formula> <tex-math notation=\"LaTeX\">$k$ </tex-math></inline-formula> data points with the minimum distance to <inline-formula> <tex-math notation=\"LaTeX\">$q$ </tex-math></inline-formula>. This problem is challenging due to two reasons. First, how to define practical distance measures to evaluate the distance in multidomain space. Second, how to prune the search space efficiently in multiple domains. To address the challenges, we define a linear combination method-based distance measure for multidomain space. Based on the distance measure, a collaborative search method is developed to constrain the CD search space in a comparable smaller range. A pair of upper and lower bounds is defined to prune the search space in multiple domains effectively. Finally, we conduct extensive experiments to verify that the developed methods can achieve a high performance.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"16 1","pages":"1801-1805"},"PeriodicalIF":4.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2019.2906686","citationCount":"3","resultStr":"{\"title\":\"Collaborative Cross-Domain $k$ NN Search for Remote Sensing Image Processing\",\"authors\":\"Ying Zhong, Wei Weng, Jianmin Li, Shunzhi Zhu\",\"doi\":\"10.1109/LGRS.2019.2906686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<inline-formula> <tex-math notation=\\\"LaTeX\\\">$k$ </tex-math></inline-formula>NN search is a fundamental function in image processing, which is useful in many real applications, including image cluster, image classification, and image understanding and analysis in general. In this light, we propose and study a novel collaborative cross-domain <inline-formula> <tex-math notation=\\\"LaTeX\\\">$k$ </tex-math></inline-formula>NN search (CD-<inline-formula> <tex-math notation=\\\"LaTeX\\\">$k$ </tex-math></inline-formula>NN) in multidomain space. Given a query location <inline-formula> <tex-math notation=\\\"LaTeX\\\">$q$ </tex-math></inline-formula> in a multidomain space (e.g., spatial domain, temporal domain, textual domain, and so on), the CD-<inline-formula> <tex-math notation=\\\"LaTeX\\\">$k$ </tex-math></inline-formula>NN finds top-<inline-formula> <tex-math notation=\\\"LaTeX\\\">$k$ </tex-math></inline-formula> data points with the minimum distance to <inline-formula> <tex-math notation=\\\"LaTeX\\\">$q$ </tex-math></inline-formula>. This problem is challenging due to two reasons. First, how to define practical distance measures to evaluate the distance in multidomain space. Second, how to prune the search space efficiently in multiple domains. To address the challenges, we define a linear combination method-based distance measure for multidomain space. Based on the distance measure, a collaborative search method is developed to constrain the CD search space in a comparable smaller range. A pair of upper and lower bounds is defined to prune the search space in multiple domains effectively. Finally, we conduct extensive experiments to verify that the developed methods can achieve a high performance.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"16 1\",\"pages\":\"1801-1805\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/LGRS.2019.2906686\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LGRS.2019.2906686\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2019.2906686","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

NN搜索是图像处理中的一个基本功能,它在许多实际应用中都很有用,包括图像聚类、图像分类以及图像理解和分析。为此,我们提出并研究了一种新的多域协同跨域$k$ NN搜索(CD- $k$ NN)。给定一个在多域空间(例如,空间域、时间域、文本域等)中的查询位置$q$, CD- $k$ NN找到与$q$距离最小的前$k$数据点。由于两个原因,这个问题具有挑战性。首先,如何定义实用的距离度量来评估多域空间中的距离。第二,如何在多个域内有效地修剪搜索空间。为了解决这些问题,我们定义了一种基于线性组合方法的多域空间距离度量。在距离测度的基础上,提出了一种协同搜索方法,将CD搜索空间限制在相对较小的范围内。定义了一对上界和下界,对多个域的搜索空间进行了有效的裁剪。最后,我们进行了大量的实验来验证所开发的方法可以达到较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Cross-Domain $k$ NN Search for Remote Sensing Image Processing
$k$ NN search is a fundamental function in image processing, which is useful in many real applications, including image cluster, image classification, and image understanding and analysis in general. In this light, we propose and study a novel collaborative cross-domain $k$ NN search (CD- $k$ NN) in multidomain space. Given a query location $q$ in a multidomain space (e.g., spatial domain, temporal domain, textual domain, and so on), the CD- $k$ NN finds top- $k$ data points with the minimum distance to $q$ . This problem is challenging due to two reasons. First, how to define practical distance measures to evaluate the distance in multidomain space. Second, how to prune the search space efficiently in multiple domains. To address the challenges, we define a linear combination method-based distance measure for multidomain space. Based on the distance measure, a collaborative search method is developed to constrain the CD search space in a comparable smaller range. A pair of upper and lower bounds is defined to prune the search space in multiple domains effectively. Finally, we conduct extensive experiments to verify that the developed methods can achieve a high performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信