复Finsler流形的双扭积

IF 0.8 4区 数学
W. Xiao, Yong He, Xiaoying Lu null, Xiangxiang Deng
{"title":"复Finsler流形的双扭积","authors":"W. Xiao, Yong He, Xiaoying Lu null, Xiangxiang Deng","doi":"10.4208/jms.v55n2.22.04","DOIUrl":null,"url":null,"abstract":"Let (M1,F1) and (M2,F2) be two strongly pseudoconvex complex Finsler manifolds. The doubly twisted product (abbreviated as DTP) complex Finsler manifold (M1×(λ1,λ2) M2,F) is the product manifold M1×M2 endowed with the twisted product complex Finsler metric F=λ1F 2 1 +λ 2 2F 2 2 , where λ1 and λ2 are positive smooth functions on M1×M2. In this paper, the relationships between the geometric objects (e.g. complex Finsler connections, holomorphic and Ricci scalar curvatures, and real geodesic) of a DTP-complex Finsler manifold and its components are derived. The necessary and sufficient conditions under which the DTP-complex Finsler manifold is a Kähler Finsler (respctively weakly Kähler Finsler, complex Berwald, weakly complex Berwald, complex Landsberg) manifold are obtained. By means of these, we provide a possible way to construct a weakly complex Berwald manifold, and then give a characterization for a complex Landsberg metric that is not a Berwald metric. AMS subject classifications: 53C60, 53C40","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Doubly Twisted Product of Complex Finsler Manifolds\",\"authors\":\"W. Xiao, Yong He, Xiaoying Lu null, Xiangxiang Deng\",\"doi\":\"10.4208/jms.v55n2.22.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (M1,F1) and (M2,F2) be two strongly pseudoconvex complex Finsler manifolds. The doubly twisted product (abbreviated as DTP) complex Finsler manifold (M1×(λ1,λ2) M2,F) is the product manifold M1×M2 endowed with the twisted product complex Finsler metric F=λ1F 2 1 +λ 2 2F 2 2 , where λ1 and λ2 are positive smooth functions on M1×M2. In this paper, the relationships between the geometric objects (e.g. complex Finsler connections, holomorphic and Ricci scalar curvatures, and real geodesic) of a DTP-complex Finsler manifold and its components are derived. The necessary and sufficient conditions under which the DTP-complex Finsler manifold is a Kähler Finsler (respctively weakly Kähler Finsler, complex Berwald, weakly complex Berwald, complex Landsberg) manifold are obtained. By means of these, we provide a possible way to construct a weakly complex Berwald manifold, and then give a characterization for a complex Landsberg metric that is not a Berwald metric. AMS subject classifications: 53C60, 53C40\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v55n2.22.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v55n2.22.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设(M1,F1)和(M2,F2)是两个强拟凸复Finsler流形。双扭积(简称DTP)复Finsler流形(M1×(λ1,λ2)M2,F)是被赋予扭积复Finsler-度量F=λ1F2 1+λ2F2 2的乘积流形M1×M2,其中λ1和λ2是M1×M2上的正光滑函数。本文导出了DTP复Finsler流形的几何对象(如复Finsleer连接、全纯和Ricci标量曲率以及实测地线)与其分量之间的关系。得到了DTP复Finsler流形是Kähler-Finsler(分别为弱Käler-Finsler,复Berwald,弱复Berwal,复Landsberg)流形的充要条件。通过这些,我们提供了一种构造弱复Berwald流形的可能方法,然后给出了不是Berwald度量的复Landsberg度量的特征。AMS科目分类:53C60、53C40
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Doubly Twisted Product of Complex Finsler Manifolds
Let (M1,F1) and (M2,F2) be two strongly pseudoconvex complex Finsler manifolds. The doubly twisted product (abbreviated as DTP) complex Finsler manifold (M1×(λ1,λ2) M2,F) is the product manifold M1×M2 endowed with the twisted product complex Finsler metric F=λ1F 2 1 +λ 2 2F 2 2 , where λ1 and λ2 are positive smooth functions on M1×M2. In this paper, the relationships between the geometric objects (e.g. complex Finsler connections, holomorphic and Ricci scalar curvatures, and real geodesic) of a DTP-complex Finsler manifold and its components are derived. The necessary and sufficient conditions under which the DTP-complex Finsler manifold is a Kähler Finsler (respctively weakly Kähler Finsler, complex Berwald, weakly complex Berwald, complex Landsberg) manifold are obtained. By means of these, we provide a possible way to construct a weakly complex Berwald manifold, and then give a characterization for a complex Landsberg metric that is not a Berwald metric. AMS subject classifications: 53C60, 53C40
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信