Tianzheng Wen, Fei Guo, Yijie Huang, S. Zhu, X. Jia
{"title":"基于多孔介质模型的发泡硅橡胶静密封规律分析","authors":"Tianzheng Wen, Fei Guo, Yijie Huang, S. Zhu, X. Jia","doi":"10.1177/0262489319890076","DOIUrl":null,"url":null,"abstract":"We established a method for calculating and analyzing the static leakage rate based on a porous media model for foamed silicone rubber materials. The mechanical properties of the foamed silicone rubber material under macroscopic compression were described by the Ogden third (foam) model in the finite-element hyperelastic model. It solved the problem of difficult convergence of large compressible and volume compressible cell materials. The size and distribution of the cells on the surface of the foamed material were obtained by a white-light interferometer and mathematical fitting. The boundary conditions for solving the porous medium model were obtained by the coupling of the macroscopic contact pressure and the microscopic cell contact pressure. For the unique cell structure and contact state of the surface of the foamed material, the flow state of the fluid at the sealing interface was described by a porous medium model, and the leak rate was obtained. In addition, this article analyzed the effect of different compression and the relative pressure of the sealing end face on the leakage.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319890076","citationCount":"3","resultStr":"{\"title\":\"Analysis of static sealing rules of foamed silicone rubber based on a porous media model\",\"authors\":\"Tianzheng Wen, Fei Guo, Yijie Huang, S. Zhu, X. Jia\",\"doi\":\"10.1177/0262489319890076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We established a method for calculating and analyzing the static leakage rate based on a porous media model for foamed silicone rubber materials. The mechanical properties of the foamed silicone rubber material under macroscopic compression were described by the Ogden third (foam) model in the finite-element hyperelastic model. It solved the problem of difficult convergence of large compressible and volume compressible cell materials. The size and distribution of the cells on the surface of the foamed material were obtained by a white-light interferometer and mathematical fitting. The boundary conditions for solving the porous medium model were obtained by the coupling of the macroscopic contact pressure and the microscopic cell contact pressure. For the unique cell structure and contact state of the surface of the foamed material, the flow state of the fluid at the sealing interface was described by a porous medium model, and the leak rate was obtained. In addition, this article analyzed the effect of different compression and the relative pressure of the sealing end face on the leakage.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489319890076\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489319890076\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319890076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of static sealing rules of foamed silicone rubber based on a porous media model
We established a method for calculating and analyzing the static leakage rate based on a porous media model for foamed silicone rubber materials. The mechanical properties of the foamed silicone rubber material under macroscopic compression were described by the Ogden third (foam) model in the finite-element hyperelastic model. It solved the problem of difficult convergence of large compressible and volume compressible cell materials. The size and distribution of the cells on the surface of the foamed material were obtained by a white-light interferometer and mathematical fitting. The boundary conditions for solving the porous medium model were obtained by the coupling of the macroscopic contact pressure and the microscopic cell contact pressure. For the unique cell structure and contact state of the surface of the foamed material, the flow state of the fluid at the sealing interface was described by a porous medium model, and the leak rate was obtained. In addition, this article analyzed the effect of different compression and the relative pressure of the sealing end face on the leakage.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.