拉普拉斯变换方法中出现的多元Mittag-Leffler函数的一种变体

IF 0.7 3区 数学 Q2 MATHEMATICS
A. Abilassan, J. Restrepo, D. Suragan
{"title":"拉普拉斯变换方法中出现的多元Mittag-Leffler函数的一种变体","authors":"A. Abilassan, J. Restrepo, D. Suragan","doi":"10.1080/10652469.2022.2111420","DOIUrl":null,"url":null,"abstract":"By using the Laplace transform method, we revisit the multivariate Mittag-Leffler function as an effective tool to construct a solution for some classes of fractional differential equations with constant coefficients. To support our results, we discuss several particular cases related to classical fractional differential operators. The techniques are not only restricted to fractional derivative operators but also can be applied to general constant coefficient differential equations, including high-order ordinary differential equations.","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"244 - 260"},"PeriodicalIF":0.7000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On a variant of multivariate Mittag-Leffler's function arising in the Laplace transform method\",\"authors\":\"A. Abilassan, J. Restrepo, D. Suragan\",\"doi\":\"10.1080/10652469.2022.2111420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using the Laplace transform method, we revisit the multivariate Mittag-Leffler function as an effective tool to construct a solution for some classes of fractional differential equations with constant coefficients. To support our results, we discuss several particular cases related to classical fractional differential operators. The techniques are not only restricted to fractional derivative operators but also can be applied to general constant coefficient differential equations, including high-order ordinary differential equations.\",\"PeriodicalId\":54972,\"journal\":{\"name\":\"Integral Transforms and Special Functions\",\"volume\":\"34 1\",\"pages\":\"244 - 260\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Transforms and Special Functions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10652469.2022.2111420\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2022.2111420","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

利用拉普拉斯变换方法,我们重新讨论了多元Mittag-Leffler函数作为构造一类常系数分数阶微分方程解的有效工具。为了支持我们的结果,我们讨论了几个与经典分数阶微分算子相关的特殊情况。该技术不仅局限于分数阶导数算子,而且可以应用于一般常系数微分方程,包括高阶常微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a variant of multivariate Mittag-Leffler's function arising in the Laplace transform method
By using the Laplace transform method, we revisit the multivariate Mittag-Leffler function as an effective tool to construct a solution for some classes of fractional differential equations with constant coefficients. To support our results, we discuss several particular cases related to classical fractional differential operators. The techniques are not only restricted to fractional derivative operators but also can be applied to general constant coefficient differential equations, including high-order ordinary differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
20.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信