含夹杂矩阵中应力强度因子的计算

Claude Lincourt, J. Lanteigne, M. Krishnadev, C. Blais
{"title":"含夹杂矩阵中应力强度因子的计算","authors":"Claude Lincourt, J. Lanteigne, M. Krishnadev, C. Blais","doi":"10.4236/MNSMS.2019.92002","DOIUrl":null,"url":null,"abstract":"The intent of this paper is to propose an engineering approach to estimate the stress intensity factor of a micro crack emerging from an inclusion in relation with the morphology of the inclusion and its relative stiffness with the matrix. A micromechanical model, based on the FEA (finite element analysis) of the behavior of cracks initiated at micro structural features such as inclusions, has been developed using LEFM (Linear Elastic Fracture Mechanics) to predict the stress intensity factor of a micro crack emerging from an inclusion. Morphology of inclusions has important connotations in the development of the analysis. Stress intensity factor has been estimated from the FEA model for different crack geometries. Metallographic analysis of inclusions has been carried out to evaluate the typical inclusion geometry. It also suggests that micro cracks less than 1 μm behave differently than larger cracks.","PeriodicalId":60895,"journal":{"name":"材料科学建模与数值模拟(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Calculation of the Stress Intensity Factor in an Inclusion-Containing Matrix\",\"authors\":\"Claude Lincourt, J. Lanteigne, M. Krishnadev, C. Blais\",\"doi\":\"10.4236/MNSMS.2019.92002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intent of this paper is to propose an engineering approach to estimate the stress intensity factor of a micro crack emerging from an inclusion in relation with the morphology of the inclusion and its relative stiffness with the matrix. A micromechanical model, based on the FEA (finite element analysis) of the behavior of cracks initiated at micro structural features such as inclusions, has been developed using LEFM (Linear Elastic Fracture Mechanics) to predict the stress intensity factor of a micro crack emerging from an inclusion. Morphology of inclusions has important connotations in the development of the analysis. Stress intensity factor has been estimated from the FEA model for different crack geometries. Metallographic analysis of inclusions has been carried out to evaluate the typical inclusion geometry. It also suggests that micro cracks less than 1 μm behave differently than larger cracks.\",\"PeriodicalId\":60895,\"journal\":{\"name\":\"材料科学建模与数值模拟(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料科学建模与数值模拟(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/MNSMS.2019.92002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料科学建模与数值模拟(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/MNSMS.2019.92002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是提出一种工程方法,根据夹杂物的形态及其与基体的相对刚度来估计夹杂物产生的微裂纹的应力强度因子。基于夹杂物等微观结构特征处裂纹行为的有限元分析,利用线性弹性断裂力学(LEFM)建立了一个微观力学模型,以预测夹杂物产生的微裂纹的应力强度因子。夹杂物的形态对分析的发展具有重要的意义。应力强度因子已根据不同裂纹几何形状的有限元分析模型进行估算。对夹杂物进行了金相分析,以评估典型的夹杂物几何形状。它还表明,小于1μm的微裂纹的行为与较大的裂纹不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of the Stress Intensity Factor in an Inclusion-Containing Matrix
The intent of this paper is to propose an engineering approach to estimate the stress intensity factor of a micro crack emerging from an inclusion in relation with the morphology of the inclusion and its relative stiffness with the matrix. A micromechanical model, based on the FEA (finite element analysis) of the behavior of cracks initiated at micro structural features such as inclusions, has been developed using LEFM (Linear Elastic Fracture Mechanics) to predict the stress intensity factor of a micro crack emerging from an inclusion. Morphology of inclusions has important connotations in the development of the analysis. Stress intensity factor has been estimated from the FEA model for different crack geometries. Metallographic analysis of inclusions has been carried out to evaluate the typical inclusion geometry. It also suggests that micro cracks less than 1 μm behave differently than larger cracks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
51
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信