具有对数非线性的相对论Schrödinger调和分数p-Laplacian模型的径向对称性

IF 2.6 3区 数学 Q1 MATHEMATICS, APPLIED
Wenwen Hou, Lihong Zhang
{"title":"具有对数非线性的相对论Schrödinger调和分数p-Laplacian模型的径向对称性","authors":"Wenwen Hou, Lihong Zhang","doi":"10.15388/namc.2023.28.29621","DOIUrl":null,"url":null,"abstract":"In this paper, by introducing a relativistic Schrödinger tempered fractional p-Laplacian operator (–Δ)p,λs,m, based on the relativistic Schrödinger operator (–Δ + m2)s and the tempered fractional Laplacian (Δ + λ)β/2, we consider a relativistic Schrödinger tempered fractional p-Laplacian model involving logarithmic nonlinearity. We first establish maximum principle and boundary estimate, which play a very crucial role in the later process. Then we obtain radial symmetry and monotonicity results by using the direct method of moving planes.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial symmetry of a relativistic Schrödinger tempered fractional p-Laplacian model with logarithmic nonlinearity\",\"authors\":\"Wenwen Hou, Lihong Zhang\",\"doi\":\"10.15388/namc.2023.28.29621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by introducing a relativistic Schrödinger tempered fractional p-Laplacian operator (–Δ)p,λs,m, based on the relativistic Schrödinger operator (–Δ + m2)s and the tempered fractional Laplacian (Δ + λ)β/2, we consider a relativistic Schrödinger tempered fractional p-Laplacian model involving logarithmic nonlinearity. We first establish maximum principle and boundary estimate, which play a very crucial role in the later process. Then we obtain radial symmetry and monotonicity results by using the direct method of moving planes.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.29621\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.29621","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在相对论性薛定谔算子(–Δ+m2)s和调和分数拉普拉斯算子(Δ+λ)β/2的基础上,引入相对论性Schrödinger调和分数p-拉普拉斯算子(–△)p,λs,m,我们考虑了一个涉及对数非线性的相对论性Schrötinger调和分数p-拉普拉斯模型。我们首先建立了极大值原理和边界估计,这在后面的过程中起着至关重要的作用。然后利用移动平面的直接方法得到了径向对称性和单调性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial symmetry of a relativistic Schrödinger tempered fractional p-Laplacian model with logarithmic nonlinearity
In this paper, by introducing a relativistic Schrödinger tempered fractional p-Laplacian operator (–Δ)p,λs,m, based on the relativistic Schrödinger operator (–Δ + m2)s and the tempered fractional Laplacian (Δ + λ)β/2, we consider a relativistic Schrödinger tempered fractional p-Laplacian model involving logarithmic nonlinearity. We first establish maximum principle and boundary estimate, which play a very crucial role in the later process. Then we obtain radial symmetry and monotonicity results by using the direct method of moving planes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Analysis-Modelling and Control
Nonlinear Analysis-Modelling and Control MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.80
自引率
10.00%
发文量
63
审稿时长
9.6 months
期刊介绍: The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology. The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信