二阶Fredholm积分微分方程线性有理有限差分解SOR迭代法的改进

IF 0.5 Q3 MATHEMATICS
M. M. Xu, J. Sulaiman, L. H. Ali
{"title":"二阶Fredholm积分微分方程线性有理有限差分解SOR迭代法的改进","authors":"M. M. Xu, J. Sulaiman, L. H. Ali","doi":"10.47836/mjms.16.1.09","DOIUrl":null,"url":null,"abstract":"The primary objective of this paper is to develop the Refinement of Successive Over-Relaxation (RSOR) method based on a three-point linear rational finite difference-quadrature discretization scheme for the numerical solution of second-order linear Fredholm integro-differential equation (FIDE). Besides, to illuminate the superior performance of the proposed method, some numerical examples are presented and solved by implementing three approaches which are the Gauss-Seidel (GS), the Successive Over-Relaxation (SOR) and the RSOR methods. Lastly, through the comparison of the results, it is verified that the RSOR method is more effective than the other two methods, especially when considering the aspects of the number of iterations and running time.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinement of SOR Iterative Method for the Linear Rational Finite Difference Solution of Second-Order Fredholm Integro-Differential Equations\",\"authors\":\"M. M. Xu, J. Sulaiman, L. H. Ali\",\"doi\":\"10.47836/mjms.16.1.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of this paper is to develop the Refinement of Successive Over-Relaxation (RSOR) method based on a three-point linear rational finite difference-quadrature discretization scheme for the numerical solution of second-order linear Fredholm integro-differential equation (FIDE). Besides, to illuminate the superior performance of the proposed method, some numerical examples are presented and solved by implementing three approaches which are the Gauss-Seidel (GS), the Successive Over-Relaxation (SOR) and the RSOR methods. Lastly, through the comparison of the results, it is verified that the RSOR method is more effective than the other two methods, especially when considering the aspects of the number of iterations and running time.\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.16.1.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是发展基于三点线性有理有限差分正交离散格式的连续过松弛(RSOR)方法的改进,用于求解二阶线性Fredholm积分-微分方程(FIDE)的数值解。此外,为了说明该方法的优越性,给出了一些数值算例,并通过实现高斯-塞德尔(GS)、逐次过松弛(SOR)和RSOR三种方法进行了求解。最后,通过对结果的比较,验证了RSOR方法比其他两种方法更有效,特别是在考虑迭代次数和运行时间方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinement of SOR Iterative Method for the Linear Rational Finite Difference Solution of Second-Order Fredholm Integro-Differential Equations
The primary objective of this paper is to develop the Refinement of Successive Over-Relaxation (RSOR) method based on a three-point linear rational finite difference-quadrature discretization scheme for the numerical solution of second-order linear Fredholm integro-differential equation (FIDE). Besides, to illuminate the superior performance of the proposed method, some numerical examples are presented and solved by implementing three approaches which are the Gauss-Seidel (GS), the Successive Over-Relaxation (SOR) and the RSOR methods. Lastly, through the comparison of the results, it is verified that the RSOR method is more effective than the other two methods, especially when considering the aspects of the number of iterations and running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信