{"title":"线性分式随机方程的Harnack型不等式","authors":"B. Boufoussi, S. Mouchtabih","doi":"10.1515/rose-2020-2046","DOIUrl":null,"url":null,"abstract":"Abstract Using the coupling method and Girsanov theorem, we prove a Harnack-type inequality for a stochastic differential equation with non-Lipschitz drift and driven by a fractional Brownian motion with Hurst parameter H < 1 2 {H<\\frac{1}{2}} . We also investigate this inequality for a stochastic differential equation driven by an additive fractional Brownian sheet.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"28 1","pages":"281 - 290"},"PeriodicalIF":0.3000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2020-2046","citationCount":"0","resultStr":"{\"title\":\"Harnack-type inequality for linear fractional stochastic equations\",\"authors\":\"B. Boufoussi, S. Mouchtabih\",\"doi\":\"10.1515/rose-2020-2046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using the coupling method and Girsanov theorem, we prove a Harnack-type inequality for a stochastic differential equation with non-Lipschitz drift and driven by a fractional Brownian motion with Hurst parameter H < 1 2 {H<\\\\frac{1}{2}} . We also investigate this inequality for a stochastic differential equation driven by an additive fractional Brownian sheet.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"28 1\",\"pages\":\"281 - 290\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rose-2020-2046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2020-2046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2020-2046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Harnack-type inequality for linear fractional stochastic equations
Abstract Using the coupling method and Girsanov theorem, we prove a Harnack-type inequality for a stochastic differential equation with non-Lipschitz drift and driven by a fractional Brownian motion with Hurst parameter H < 1 2 {H<\frac{1}{2}} . We also investigate this inequality for a stochastic differential equation driven by an additive fractional Brownian sheet.