{"title":"应用普适计算算法对患者语音进行分类","authors":"A. Maddali, Habibullah Khan","doi":"10.1108/ijpcc-07-2021-0158","DOIUrl":null,"url":null,"abstract":"\nPurpose\nCurrently, the design, technological features of voices, and their analysis of various applications are being simulated with the requirement to communicate at a greater distance or more discreetly. The purpose of this study is to explore how voices and their analyses are used in modern literature to generate a variety of solutions, of which only a few successful models exist.\n\n\nDesign/methodology\nThe mel-frequency cepstral coefficient (MFCC), average magnitude difference function, cepstrum analysis and other voice characteristics are effectively modeled and implemented using mathematical modeling with variable weights parametric for each algorithm, which can be used with or without noises. Improvising the design characteristics and their weights with different supervised algorithms that regulate the design model simulation.\n\n\nFindings\nDifferent data models have been influenced by the parametric range and solution analysis in different space parameters, such as frequency or time model, with features such as without, with and after noise reduction. The frequency response of the current design can be analyzed through the Windowing techniques.\n\n\nOriginal value\nA new model and its implementation scenario with pervasive computational algorithms’ (PCA) (such as the hybrid PCA with AdaBoost (HPCA), PCA with bag of features and improved PCA with bag of features) relating the different features such as MFCC, power spectrum, pitch, Window techniques, etc. are calculated using the HPCA. The features are accumulated on the matrix formulations and govern the design feature comparison and its feature classification for improved performance parameters, as mentioned in the results.\n","PeriodicalId":43952,"journal":{"name":"International Journal of Pervasive Computing and Communications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of disordered patient’s voice by using pervasive computational algorithms\",\"authors\":\"A. Maddali, Habibullah Khan\",\"doi\":\"10.1108/ijpcc-07-2021-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nCurrently, the design, technological features of voices, and their analysis of various applications are being simulated with the requirement to communicate at a greater distance or more discreetly. The purpose of this study is to explore how voices and their analyses are used in modern literature to generate a variety of solutions, of which only a few successful models exist.\\n\\n\\nDesign/methodology\\nThe mel-frequency cepstral coefficient (MFCC), average magnitude difference function, cepstrum analysis and other voice characteristics are effectively modeled and implemented using mathematical modeling with variable weights parametric for each algorithm, which can be used with or without noises. Improvising the design characteristics and their weights with different supervised algorithms that regulate the design model simulation.\\n\\n\\nFindings\\nDifferent data models have been influenced by the parametric range and solution analysis in different space parameters, such as frequency or time model, with features such as without, with and after noise reduction. The frequency response of the current design can be analyzed through the Windowing techniques.\\n\\n\\nOriginal value\\nA new model and its implementation scenario with pervasive computational algorithms’ (PCA) (such as the hybrid PCA with AdaBoost (HPCA), PCA with bag of features and improved PCA with bag of features) relating the different features such as MFCC, power spectrum, pitch, Window techniques, etc. are calculated using the HPCA. The features are accumulated on the matrix formulations and govern the design feature comparison and its feature classification for improved performance parameters, as mentioned in the results.\\n\",\"PeriodicalId\":43952,\"journal\":{\"name\":\"International Journal of Pervasive Computing and Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pervasive Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijpcc-07-2021-0158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijpcc-07-2021-0158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Classification of disordered patient’s voice by using pervasive computational algorithms
Purpose
Currently, the design, technological features of voices, and their analysis of various applications are being simulated with the requirement to communicate at a greater distance or more discreetly. The purpose of this study is to explore how voices and their analyses are used in modern literature to generate a variety of solutions, of which only a few successful models exist.
Design/methodology
The mel-frequency cepstral coefficient (MFCC), average magnitude difference function, cepstrum analysis and other voice characteristics are effectively modeled and implemented using mathematical modeling with variable weights parametric for each algorithm, which can be used with or without noises. Improvising the design characteristics and their weights with different supervised algorithms that regulate the design model simulation.
Findings
Different data models have been influenced by the parametric range and solution analysis in different space parameters, such as frequency or time model, with features such as without, with and after noise reduction. The frequency response of the current design can be analyzed through the Windowing techniques.
Original value
A new model and its implementation scenario with pervasive computational algorithms’ (PCA) (such as the hybrid PCA with AdaBoost (HPCA), PCA with bag of features and improved PCA with bag of features) relating the different features such as MFCC, power spectrum, pitch, Window techniques, etc. are calculated using the HPCA. The features are accumulated on the matrix formulations and govern the design feature comparison and its feature classification for improved performance parameters, as mentioned in the results.