{"title":"一种新型玻璃纤维增强聚氨酯弹性体作为船板系统的核心夹层材料","authors":"A. Ismail, A. Zubaydi, B. Piscesa, T. Tuswan","doi":"10.1515/jmbm-2022-0288","DOIUrl":null,"url":null,"abstract":"Abstract A novel low-cost polyurethane (PU) elastomeric material reinforced with mat-form fiberglass for alternative ship material was developed. The hand lay-up technique was used to prepare samples with glass fiber contents of 0, 7, 9, 11, and 15% by weight. Several tests, including density, tensile, and hardness tests, have been conducted to investigate the effect of fiber content on the material properties of the developed materials. The test results found that only composites with 0% (PU) and 7% (PFg-7) fiberglass had met all Lloyd’s Register criteria. PFg-7 has a density of 1,098 kg/m3, a hardness of 66.15 shore-D, a tensile strength of 21.32 MPa, and an elongation at break of 47.06%, a higher hardness, elastic modulus, and yield strength than PU. PFg-15 achieved the highest density, hardness, tensile strength, elastic modulus, and yield strength, which were 1,228 kg/m3, 68.85 shore-D, 32.13, 2,176, and 30.89 MPa, respectively. The elastic modulus and yield strength of PFg-15 were 5.6 times and 3 times higher than those of PU but PFg-15 did not meet the elongation at break criteria. PFg-9, PFg-11, and PFg-15 showed brittle properties, as indicated by relatively high hardness, elastic modulus, and yield strength compared to the results from various references.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel fiberglass-reinforced polyurethane elastomer as the core sandwich material of the ship–plate system\",\"authors\":\"A. Ismail, A. Zubaydi, B. Piscesa, T. Tuswan\",\"doi\":\"10.1515/jmbm-2022-0288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A novel low-cost polyurethane (PU) elastomeric material reinforced with mat-form fiberglass for alternative ship material was developed. The hand lay-up technique was used to prepare samples with glass fiber contents of 0, 7, 9, 11, and 15% by weight. Several tests, including density, tensile, and hardness tests, have been conducted to investigate the effect of fiber content on the material properties of the developed materials. The test results found that only composites with 0% (PU) and 7% (PFg-7) fiberglass had met all Lloyd’s Register criteria. PFg-7 has a density of 1,098 kg/m3, a hardness of 66.15 shore-D, a tensile strength of 21.32 MPa, and an elongation at break of 47.06%, a higher hardness, elastic modulus, and yield strength than PU. PFg-15 achieved the highest density, hardness, tensile strength, elastic modulus, and yield strength, which were 1,228 kg/m3, 68.85 shore-D, 32.13, 2,176, and 30.89 MPa, respectively. The elastic modulus and yield strength of PFg-15 were 5.6 times and 3 times higher than those of PU but PFg-15 did not meet the elongation at break criteria. PFg-9, PFg-11, and PFg-15 showed brittle properties, as indicated by relatively high hardness, elastic modulus, and yield strength compared to the results from various references.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel fiberglass-reinforced polyurethane elastomer as the core sandwich material of the ship–plate system
Abstract A novel low-cost polyurethane (PU) elastomeric material reinforced with mat-form fiberglass for alternative ship material was developed. The hand lay-up technique was used to prepare samples with glass fiber contents of 0, 7, 9, 11, and 15% by weight. Several tests, including density, tensile, and hardness tests, have been conducted to investigate the effect of fiber content on the material properties of the developed materials. The test results found that only composites with 0% (PU) and 7% (PFg-7) fiberglass had met all Lloyd’s Register criteria. PFg-7 has a density of 1,098 kg/m3, a hardness of 66.15 shore-D, a tensile strength of 21.32 MPa, and an elongation at break of 47.06%, a higher hardness, elastic modulus, and yield strength than PU. PFg-15 achieved the highest density, hardness, tensile strength, elastic modulus, and yield strength, which were 1,228 kg/m3, 68.85 shore-D, 32.13, 2,176, and 30.89 MPa, respectively. The elastic modulus and yield strength of PFg-15 were 5.6 times and 3 times higher than those of PU but PFg-15 did not meet the elongation at break criteria. PFg-9, PFg-11, and PFg-15 showed brittle properties, as indicated by relatively high hardness, elastic modulus, and yield strength compared to the results from various references.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.