比较高属表面的形状

IF 0.5 4区 数学 Q3 MATHEMATICS
Yanwen Luo
{"title":"比较高属表面的形状","authors":"Yanwen Luo","doi":"10.4310/ajm.2021.v25.n4.a7","DOIUrl":null,"url":null,"abstract":"In this paper, we define a new metric structure on the shape space of a high genus surface. We introduce a rigorous definition of a shape of a surface and construct a metric based on two energies measuring the area distortion and the angle distortion of a quasiconformal homeomorphism. We show that the energy minimizer in a fixed homotopy class is achieved by a quasiconformal homeomorphism by the lower semicontinuity property of these two energies. Finally, we explore the properties of several energies related to the Dirichlet energy.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing shapes of high genus surfaces\",\"authors\":\"Yanwen Luo\",\"doi\":\"10.4310/ajm.2021.v25.n4.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a new metric structure on the shape space of a high genus surface. We introduce a rigorous definition of a shape of a surface and construct a metric based on two energies measuring the area distortion and the angle distortion of a quasiconformal homeomorphism. We show that the energy minimizer in a fixed homotopy class is achieved by a quasiconformal homeomorphism by the lower semicontinuity property of these two energies. Finally, we explore the properties of several energies related to the Dirichlet energy.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n4.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在高亏格曲面的形状空间上定义了一个新的度量结构。我们引入了曲面形状的严格定义,并基于测量拟共形同胚的面积畸变和角度畸变的两个能量构造了一个度量。我们证明了一个固定的同胚类中的能量极小化是由一个拟共形同胚通过这两个能量的下半连续性实现的。最后,我们探讨了与狄利克雷能量有关的几种能量的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing shapes of high genus surfaces
In this paper, we define a new metric structure on the shape space of a high genus surface. We introduce a rigorous definition of a shape of a surface and construct a metric based on two energies measuring the area distortion and the angle distortion of a quasiconformal homeomorphism. We show that the energy minimizer in a fixed homotopy class is achieved by a quasiconformal homeomorphism by the lower semicontinuity property of these two energies. Finally, we explore the properties of several energies related to the Dirichlet energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信