关于chen - simons摄动理论的注解

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
K. Wernli
{"title":"关于chen - simons摄动理论的注解","authors":"K. Wernli","doi":"10.1142/s0129055x22300035","DOIUrl":null,"url":null,"abstract":"We give a detailed introduction to the classical Chern–Simons gauge theory, including the mathematical preliminaries. We then explain the perturbative quantization of gauge theories via the Batalin–Vilkovisky (BV) formalism. We then define the perturbative Chern–Simons partition function at any (possibly non-acylic) reference flat connection using the BV formalism, using a Riemannian metric for gauge fixing. We show that it exhibits an anomaly known as the “framing anomaly” when the Riemannian metric is changed, that is, it fails to be gauge invariant. We explain how one can deal with this anomaly to obtain a topological invariant of framed manifolds.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Notes on Chern–Simons perturbation theory\",\"authors\":\"K. Wernli\",\"doi\":\"10.1142/s0129055x22300035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a detailed introduction to the classical Chern–Simons gauge theory, including the mathematical preliminaries. We then explain the perturbative quantization of gauge theories via the Batalin–Vilkovisky (BV) formalism. We then define the perturbative Chern–Simons partition function at any (possibly non-acylic) reference flat connection using the BV formalism, using a Riemannian metric for gauge fixing. We show that it exhibits an anomaly known as the “framing anomaly” when the Riemannian metric is changed, that is, it fails to be gauge invariant. We explain how one can deal with this anomaly to obtain a topological invariant of framed manifolds.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129055x22300035\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x22300035","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

摘要

本文详细地介绍了经典的chen - simons规范理论,包括其数学基础。然后,我们通过Batalin-Vilkovisky (BV)形式解释规范理论的微扰量子化。然后,我们使用BV形式定义任意(可能是非环的)参考平面连接上的微扰chen - simons配分函数,使用黎曼度量进行规范固定。我们表明,当黎曼度规改变时,它表现出一种称为“框架异常”的异常,即它不能是规范不变的。我们解释了如何处理这种异常以获得框架流形的拓扑不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on Chern–Simons perturbation theory
We give a detailed introduction to the classical Chern–Simons gauge theory, including the mathematical preliminaries. We then explain the perturbative quantization of gauge theories via the Batalin–Vilkovisky (BV) formalism. We then define the perturbative Chern–Simons partition function at any (possibly non-acylic) reference flat connection using the BV formalism, using a Riemannian metric for gauge fixing. We show that it exhibits an anomaly known as the “framing anomaly” when the Riemannian metric is changed, that is, it fails to be gauge invariant. We explain how one can deal with this anomaly to obtain a topological invariant of framed manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信