RYANSQL:跨域数据库中基于草图的复杂文本槽填充递归应用于SQL

IF 3.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Donghyun Choi, M. Shin, EungGyun Kim, Dong Ryeol Shin
{"title":"RYANSQL:跨域数据库中基于草图的复杂文本槽填充递归应用于SQL","authors":"Donghyun Choi, M. Shin, EungGyun Kim, Dong Ryeol Shin","doi":"10.1162/coli_a_00403","DOIUrl":null,"url":null,"abstract":"Abstract Text-to-SQL is the problem of converting a user question into an SQL query, when the question and database are given. In this article, we present a neural network approach called RYANSQL (Recursively Yielding Annotation Network for SQL) to solve complex Text-to-SQL tasks for cross-domain databases. Statement Position Code (SPC) is defined to transform a nested SQL query into a set of non-nested SELECT statements; a sketch-based slot-filling approach is proposed to synthesize each SELECT statement for its corresponding SPC. Additionally, two input manipulation methods are presented to improve generation performance further. RYANSQL achieved competitive result of 58.2% accuracy on the challenging Spider benchmark. At the time of submission (April 2020), RYANSQL v2, a variant of original RYANSQL, is positioned at 3rd place among all systems and 1st place among the systems not using database content with 60.6% exact matching accuracy. The source code is available at https://github.com/kakaoenterprise/RYANSQL.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"47 1","pages":"309-332"},"PeriodicalIF":3.7000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex Text-to-SQL in Cross-Domain Databases\",\"authors\":\"Donghyun Choi, M. Shin, EungGyun Kim, Dong Ryeol Shin\",\"doi\":\"10.1162/coli_a_00403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Text-to-SQL is the problem of converting a user question into an SQL query, when the question and database are given. In this article, we present a neural network approach called RYANSQL (Recursively Yielding Annotation Network for SQL) to solve complex Text-to-SQL tasks for cross-domain databases. Statement Position Code (SPC) is defined to transform a nested SQL query into a set of non-nested SELECT statements; a sketch-based slot-filling approach is proposed to synthesize each SELECT statement for its corresponding SPC. Additionally, two input manipulation methods are presented to improve generation performance further. RYANSQL achieved competitive result of 58.2% accuracy on the challenging Spider benchmark. At the time of submission (April 2020), RYANSQL v2, a variant of original RYANSQL, is positioned at 3rd place among all systems and 1st place among the systems not using database content with 60.6% exact matching accuracy. The source code is available at https://github.com/kakaoenterprise/RYANSQL.\",\"PeriodicalId\":55229,\"journal\":{\"name\":\"Computational Linguistics\",\"volume\":\"47 1\",\"pages\":\"309-332\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Linguistics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/coli_a_00403\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00403","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 77

摘要

摘要文本到SQL是在给定问题和数据库的情况下,将用户的问题转换为SQL查询的问题。在本文中,我们提出了一种称为RYANSQL(递归生成SQL注释网络)的神经网络方法来解决跨域数据库的复杂文本到SQL任务。语句位置码(SPC)用于将嵌套的SQL查询转换为一组非嵌套的SELECT语句;提出了一种基于草图的槽填充方法来综合每个SELECT语句对应的SPC。此外,为了进一步提高生成性能,提出了两种输入操作方法。在具有挑战性的Spider基准测试中,RYANSQL获得了58.2%的准确率。在提交时(2020年4月),原始RYANSQL的变体RYANSQL v2在所有系统中排名第三,在不使用数据库内容的系统中排名第一,精确匹配准确率为60.6%。源代码可从https://github.com/kakaoenterprise/RYANSQL获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex Text-to-SQL in Cross-Domain Databases
Abstract Text-to-SQL is the problem of converting a user question into an SQL query, when the question and database are given. In this article, we present a neural network approach called RYANSQL (Recursively Yielding Annotation Network for SQL) to solve complex Text-to-SQL tasks for cross-domain databases. Statement Position Code (SPC) is defined to transform a nested SQL query into a set of non-nested SELECT statements; a sketch-based slot-filling approach is proposed to synthesize each SELECT statement for its corresponding SPC. Additionally, two input manipulation methods are presented to improve generation performance further. RYANSQL achieved competitive result of 58.2% accuracy on the challenging Spider benchmark. At the time of submission (April 2020), RYANSQL v2, a variant of original RYANSQL, is positioned at 3rd place among all systems and 1st place among the systems not using database content with 60.6% exact matching accuracy. The source code is available at https://github.com/kakaoenterprise/RYANSQL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Linguistics
Computational Linguistics 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信