平均曲率运动与戴森布朗运动

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Ching-Peng Huang, D. Inauen, Govind Menon
{"title":"平均曲率运动与戴森布朗运动","authors":"Ching-Peng Huang, D. Inauen, Govind Menon","doi":"10.1214/23-ecp540","DOIUrl":null,"url":null,"abstract":"We construct Dyson Brownian motion for $\\beta \\in (0,\\infty]$ by adapting the extrinsic construction of Brownian motion on Riemannian manifolds to the geometry of group orbits within the space of Hermitian matrices. When $\\beta$ is infinite, the eigenvalues evolve by Coulombic repulsion and the group orbits evolve by motion by (minus one half times) mean curvature.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Motion by mean curvature and Dyson Brownian Motion\",\"authors\":\"Ching-Peng Huang, D. Inauen, Govind Menon\",\"doi\":\"10.1214/23-ecp540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct Dyson Brownian motion for $\\\\beta \\\\in (0,\\\\infty]$ by adapting the extrinsic construction of Brownian motion on Riemannian manifolds to the geometry of group orbits within the space of Hermitian matrices. When $\\\\beta$ is infinite, the eigenvalues evolve by Coulombic repulsion and the group orbits evolve by motion by (minus one half times) mean curvature.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp540\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp540","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

将黎曼流形上布朗运动的外在构造适应于厄米矩阵空间内群轨道的几何构造,构造了$\beta \in (0,\infty]$的戴森布朗运动。当$\beta$为无穷大时,特征值通过库仑斥力演化,群轨道通过(- 1 / 2)平均曲率的运动演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion by mean curvature and Dyson Brownian Motion
We construct Dyson Brownian motion for $\beta \in (0,\infty]$ by adapting the extrinsic construction of Brownian motion on Riemannian manifolds to the geometry of group orbits within the space of Hermitian matrices. When $\beta$ is infinite, the eigenvalues evolve by Coulombic repulsion and the group orbits evolve by motion by (minus one half times) mean curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信