同步游戏产品

IF 0.7 3区 数学 Q2 MATHEMATICS
Laura Manvcinska, V. Paulsen, I. Todorov, A. Winter
{"title":"同步游戏产品","authors":"Laura Manvcinska, V. Paulsen, I. Todorov, A. Winter","doi":"10.4064/sm221201-19-4","DOIUrl":null,"url":null,"abstract":"We show that the *-algebra of the product of two synchronous games is the tensor product of the corresponding *-algebras. We prove that the product game has a perfect C*-strategy if and only if each of the individual games does, and that in this case the C*-algebra of the product game is *-isomorphic to the maximal C*-tensor product of the individual C*-algebras. We provide examples of synchronous games whose synchronous values are strictly supermultiplicative.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Products of synchronous games\",\"authors\":\"Laura Manvcinska, V. Paulsen, I. Todorov, A. Winter\",\"doi\":\"10.4064/sm221201-19-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the *-algebra of the product of two synchronous games is the tensor product of the corresponding *-algebras. We prove that the product game has a perfect C*-strategy if and only if each of the individual games does, and that in this case the C*-algebra of the product game is *-isomorphic to the maximal C*-tensor product of the individual C*-algebras. We provide examples of synchronous games whose synchronous values are strictly supermultiplicative.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm221201-19-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm221201-19-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了两个同步对策乘积的*-代数是相应*-代数的张量乘积。我们证明了乘积对策有一个完美的C*-策略,当且仅当每个单独的对策都有,并且在这种情况下,乘积对策的C*-代数与单独的C*代数的最大C*-张量积是*-同构的。我们提供了同步对策的例子,其同步值是严格超乘的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of synchronous games
We show that the *-algebra of the product of two synchronous games is the tensor product of the corresponding *-algebras. We prove that the product game has a perfect C*-strategy if and only if each of the individual games does, and that in this case the C*-algebra of the product game is *-isomorphic to the maximal C*-tensor product of the individual C*-algebras. We provide examples of synchronous games whose synchronous values are strictly supermultiplicative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信