Tiago Lima DO Nascimento, J. M. R. Barros, G. M. Oliveira, Camila Barbosa Dos Santos, T. V. Voltolini, R. P. Antônio, F. Angelotti
{"title":"考虑气温升高影响的巨肽菌材料遗传多样性","authors":"Tiago Lima DO Nascimento, J. M. R. Barros, G. M. Oliveira, Camila Barbosa Dos Santos, T. V. Voltolini, R. P. Antônio, F. Angelotti","doi":"10.14393/bj-v39n0a2023-65634","DOIUrl":null,"url":null,"abstract":"Climate changes can influence the genetic diversity of forage plants, which may contribute to the improvement and development of new species. Therefore, this research aimed to evaluate the influence of temperature increase on the genetic diversity of Macroptilium accessions based on morphoagronomic descriptors. The experiment was carried out in a growth chamber in a 2×16 factorial arrangement (temperature regimes x Macroptilium accessions), with the temperatures consisting of T1 (20–26–33 °C) and T2 (24.8–30.8–37.8 °C) and 16 accessions. Eleven morphoagronomic descriptors allowed estimating the diversity among accessions. The measurements of genetic dissimilarity enabled us to observe the genetic distance between the studied materials, standing out the accessions T1.M3 and T2.S4 as the most divergent (446.01). The morphoagronomic descriptors percentage of leaves and stem diameter were the most efficient for estimating the diversity between access. Genetic variability points to the adaptation of Macroptilium accessions in the climate change scenario. The accessions more divergent can be explored in genetic breeding programs for the species aiming at the expansion of genetic variability as an adaptation mechanism to heat stress.","PeriodicalId":8951,"journal":{"name":"Bioscience Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic diversity of Macroptilium accessions considering the increase in air temperature\",\"authors\":\"Tiago Lima DO Nascimento, J. M. R. Barros, G. M. Oliveira, Camila Barbosa Dos Santos, T. V. Voltolini, R. P. Antônio, F. Angelotti\",\"doi\":\"10.14393/bj-v39n0a2023-65634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate changes can influence the genetic diversity of forage plants, which may contribute to the improvement and development of new species. Therefore, this research aimed to evaluate the influence of temperature increase on the genetic diversity of Macroptilium accessions based on morphoagronomic descriptors. The experiment was carried out in a growth chamber in a 2×16 factorial arrangement (temperature regimes x Macroptilium accessions), with the temperatures consisting of T1 (20–26–33 °C) and T2 (24.8–30.8–37.8 °C) and 16 accessions. Eleven morphoagronomic descriptors allowed estimating the diversity among accessions. The measurements of genetic dissimilarity enabled us to observe the genetic distance between the studied materials, standing out the accessions T1.M3 and T2.S4 as the most divergent (446.01). The morphoagronomic descriptors percentage of leaves and stem diameter were the most efficient for estimating the diversity between access. Genetic variability points to the adaptation of Macroptilium accessions in the climate change scenario. The accessions more divergent can be explored in genetic breeding programs for the species aiming at the expansion of genetic variability as an adaptation mechanism to heat stress.\",\"PeriodicalId\":8951,\"journal\":{\"name\":\"Bioscience Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14393/bj-v39n0a2023-65634\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14393/bj-v39n0a2023-65634","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Genetic diversity of Macroptilium accessions considering the increase in air temperature
Climate changes can influence the genetic diversity of forage plants, which may contribute to the improvement and development of new species. Therefore, this research aimed to evaluate the influence of temperature increase on the genetic diversity of Macroptilium accessions based on morphoagronomic descriptors. The experiment was carried out in a growth chamber in a 2×16 factorial arrangement (temperature regimes x Macroptilium accessions), with the temperatures consisting of T1 (20–26–33 °C) and T2 (24.8–30.8–37.8 °C) and 16 accessions. Eleven morphoagronomic descriptors allowed estimating the diversity among accessions. The measurements of genetic dissimilarity enabled us to observe the genetic distance between the studied materials, standing out the accessions T1.M3 and T2.S4 as the most divergent (446.01). The morphoagronomic descriptors percentage of leaves and stem diameter were the most efficient for estimating the diversity between access. Genetic variability points to the adaptation of Macroptilium accessions in the climate change scenario. The accessions more divergent can be explored in genetic breeding programs for the species aiming at the expansion of genetic variability as an adaptation mechanism to heat stress.
Bioscience JournalAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
1.00
自引率
0.00%
发文量
90
审稿时长
48 weeks
期刊介绍:
The Bioscience Journal is an interdisciplinary electronic journal that publishes scientific articles in the areas of Agricultural Sciences, Biological Sciences and Health Sciences. Its mission is to disseminate new knowledge while contributing to the development of science in the country and in the world. The journal is published in a continuous flow, in English. The opinions and concepts expressed in the published articles are the sole responsibility of their authors.