一个Carleson型测度和一个Möbius不变函数空间族

Pub Date : 2023-07-07 DOI:10.1016/j.indag.2023.06.005
Guanlong Bao , Fangqin Ye
{"title":"一个Carleson型测度和一个Möbius不变函数空间族","authors":"Guanlong Bao ,&nbsp;Fangqin Ye","doi":"10.1016/j.indag.2023.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, let <span><math><mrow><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></math></span><span> be a sequence in the open unit disk such that </span><span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><msub><mrow><mi>δ</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></mrow></math></span> is an <em>s</em>-Carleson measure. In this paper, we consider the connections between this <em>s</em>-Carleson measure and the theory of Möbius invariant <em>F(p, p-2, s)</em> spaces by the Volterra type operator, the reciprocal of a Blaschke product, and second order complex differential equations having a prescribed zero sequence.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Carleson type measure and a family of Möbius invariant function spaces\",\"authors\":\"Guanlong Bao ,&nbsp;Fangqin Ye\",\"doi\":\"10.1016/j.indag.2023.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, let <span><math><mrow><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></math></span><span> be a sequence in the open unit disk such that </span><span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><msub><mrow><mi>δ</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub></mrow></math></span> is an <em>s</em>-Carleson measure. In this paper, we consider the connections between this <em>s</em>-Carleson measure and the theory of Möbius invariant <em>F(p, p-2, s)</em> spaces by the Volterra type operator, the reciprocal of a Blaschke product, and second order complex differential equations having a prescribed zero sequence.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723000599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于0<s<1,设{zn}是开单位圆盘上的一个序列,使得∑n(1−|zn|2)sδzn是s-Carleson测度。本文利用Volterra型算子、Blaschke积的倒数、具有规定零序列的二阶复微分方程,研究了s- carleson测度与Möbius不变F(p, p-2, s)空间理论之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Carleson type measure and a family of Möbius invariant function spaces

For 0<s<1, let {zn} be a sequence in the open unit disk such that n(1|zn|2)sδzn is an s-Carleson measure. In this paper, we consider the connections between this s-Carleson measure and the theory of Möbius invariant F(p, p-2, s) spaces by the Volterra type operator, the reciprocal of a Blaschke product, and second order complex differential equations having a prescribed zero sequence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信