Hao Wu, Fei Liu, Xijun Liu, Yan-wang Wu, Cai Li, R. Yang
{"title":"西藏中部早白垩世火山岩和深成岩的组成和年龄:对板块断裂的岩浆和隆升反应的认识","authors":"Hao Wu, Fei Liu, Xijun Liu, Yan-wang Wu, Cai Li, R. Yang","doi":"10.1130/ges02586.1","DOIUrl":null,"url":null,"abstract":"We present new zircon U-Pb ages and Hf isotope compositions as well as whole-rock major- and trace-element geochemical and Sr-Nd isotopic data for silicic plutonic and volcanic rocks from the Duolong area of central Tibet. Combined with existing data, our new data indicate that these plutonic and volcanic rocks were formed in two stages ca. 120 Ma and ca. 110 Ma, respectively, in a postcollisional extensional setting that was triggered by slab breakoff. The similar geochemical compositions of granitoids and rhyolites, combined with their close spatial and temporal relationships, suggest that they were both derived from juvenile crustal material within a single magmatic system. We propose that the two inferred crustal melting events in the Duolong area were caused by two episodes of deep mantle activity triggered by the transition of the plate subduction angle from steep to shallow in response to the ascent of buoyant continental lithosphere during slab breakoff. Furthermore, rapid surface uplift during the late Early Cretaceous caused by slab breakoff made an important contribution to the formation of the proto–Tibetan Plateau. This study provides new insights into postcollisional tectonomagmatism and plateau uplift in central Tibet triggered by slab breakoff. We propose more generally that tectonic uplift during postcollisional processes (i.e., slab breakoff and lithospheric delamination) is a major contributor to plateau uplift in collision zones.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositions and ages of Early Cretaceous volcanic and plutonic rocks in central Tibet: Insights into the magmatic and uplift response to slab breakoff\",\"authors\":\"Hao Wu, Fei Liu, Xijun Liu, Yan-wang Wu, Cai Li, R. Yang\",\"doi\":\"10.1130/ges02586.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new zircon U-Pb ages and Hf isotope compositions as well as whole-rock major- and trace-element geochemical and Sr-Nd isotopic data for silicic plutonic and volcanic rocks from the Duolong area of central Tibet. Combined with existing data, our new data indicate that these plutonic and volcanic rocks were formed in two stages ca. 120 Ma and ca. 110 Ma, respectively, in a postcollisional extensional setting that was triggered by slab breakoff. The similar geochemical compositions of granitoids and rhyolites, combined with their close spatial and temporal relationships, suggest that they were both derived from juvenile crustal material within a single magmatic system. We propose that the two inferred crustal melting events in the Duolong area were caused by two episodes of deep mantle activity triggered by the transition of the plate subduction angle from steep to shallow in response to the ascent of buoyant continental lithosphere during slab breakoff. Furthermore, rapid surface uplift during the late Early Cretaceous caused by slab breakoff made an important contribution to the formation of the proto–Tibetan Plateau. This study provides new insights into postcollisional tectonomagmatism and plateau uplift in central Tibet triggered by slab breakoff. We propose more generally that tectonic uplift during postcollisional processes (i.e., slab breakoff and lithospheric delamination) is a major contributor to plateau uplift in collision zones.\",\"PeriodicalId\":55100,\"journal\":{\"name\":\"Geosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/ges02586.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02586.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Compositions and ages of Early Cretaceous volcanic and plutonic rocks in central Tibet: Insights into the magmatic and uplift response to slab breakoff
We present new zircon U-Pb ages and Hf isotope compositions as well as whole-rock major- and trace-element geochemical and Sr-Nd isotopic data for silicic plutonic and volcanic rocks from the Duolong area of central Tibet. Combined with existing data, our new data indicate that these plutonic and volcanic rocks were formed in two stages ca. 120 Ma and ca. 110 Ma, respectively, in a postcollisional extensional setting that was triggered by slab breakoff. The similar geochemical compositions of granitoids and rhyolites, combined with their close spatial and temporal relationships, suggest that they were both derived from juvenile crustal material within a single magmatic system. We propose that the two inferred crustal melting events in the Duolong area were caused by two episodes of deep mantle activity triggered by the transition of the plate subduction angle from steep to shallow in response to the ascent of buoyant continental lithosphere during slab breakoff. Furthermore, rapid surface uplift during the late Early Cretaceous caused by slab breakoff made an important contribution to the formation of the proto–Tibetan Plateau. This study provides new insights into postcollisional tectonomagmatism and plateau uplift in central Tibet triggered by slab breakoff. We propose more generally that tectonic uplift during postcollisional processes (i.e., slab breakoff and lithospheric delamination) is a major contributor to plateau uplift in collision zones.
期刊介绍:
Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.