关于$G$-阶为$2的算子的一个注记$

Pub Date : 2021-06-10 DOI:10.4064/cm8600-3-2022
S. Fischler, T. Rivoal
{"title":"关于$G$-阶为$2的算子的一个注记$","authors":"S. Fischler, T. Rivoal","doi":"10.4064/cm8600-3-2022","DOIUrl":null,"url":null,"abstract":"It is known that G-functions solutions of a linear differential equation of order 1 with coefficients in Q(z) are algebraic (of a very precise form). No general result is known when the order is 2. In this paper, we determine the form of a G-function solution of an inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a G-function f of differential order 2 over Q(z) and such that f and f ′ are algebraically dependent over C(z). Our results apply more generally to holonomic Nilsson-Gevrey arithmetic series of order 0 that encompass G-functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A note on $G$-operators of order $2$\",\"authors\":\"S. Fischler, T. Rivoal\",\"doi\":\"10.4064/cm8600-3-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that G-functions solutions of a linear differential equation of order 1 with coefficients in Q(z) are algebraic (of a very precise form). No general result is known when the order is 2. In this paper, we determine the form of a G-function solution of an inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a G-function f of differential order 2 over Q(z) and such that f and f ′ are algebraically dependent over C(z). Our results apply more generally to holonomic Nilsson-Gevrey arithmetic series of order 0 that encompass G-functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8600-3-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8600-3-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

众所周知,系数为Q(z)的1阶线性微分方程的g函数解是代数的(具有非常精确的形式)。当阶数为2时,一般结果是未知的。本文确定了系数在Q(z)上的1阶非齐次方程的g函数解的形式,以及Q(z)上二阶微分阶的g函数f的解的形式,并且使得f和f '在C(z)上是代数相关的。我们的结果更普遍地适用于包含g函数的0阶完整Nilsson-Gevrey等差级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on $G$-operators of order $2$
It is known that G-functions solutions of a linear differential equation of order 1 with coefficients in Q(z) are algebraic (of a very precise form). No general result is known when the order is 2. In this paper, we determine the form of a G-function solution of an inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a G-function f of differential order 2 over Q(z) and such that f and f ′ are algebraically dependent over C(z). Our results apply more generally to holonomic Nilsson-Gevrey arithmetic series of order 0 that encompass G-functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信