{"title":"关于$G$-阶为$2的算子的一个注记$","authors":"S. Fischler, T. Rivoal","doi":"10.4064/cm8600-3-2022","DOIUrl":null,"url":null,"abstract":"It is known that G-functions solutions of a linear differential equation of order 1 with coefficients in Q(z) are algebraic (of a very precise form). No general result is known when the order is 2. In this paper, we determine the form of a G-function solution of an inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a G-function f of differential order 2 over Q(z) and such that f and f ′ are algebraically dependent over C(z). Our results apply more generally to holonomic Nilsson-Gevrey arithmetic series of order 0 that encompass G-functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A note on $G$-operators of order $2$\",\"authors\":\"S. Fischler, T. Rivoal\",\"doi\":\"10.4064/cm8600-3-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that G-functions solutions of a linear differential equation of order 1 with coefficients in Q(z) are algebraic (of a very precise form). No general result is known when the order is 2. In this paper, we determine the form of a G-function solution of an inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a G-function f of differential order 2 over Q(z) and such that f and f ′ are algebraically dependent over C(z). Our results apply more generally to holonomic Nilsson-Gevrey arithmetic series of order 0 that encompass G-functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8600-3-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8600-3-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is known that G-functions solutions of a linear differential equation of order 1 with coefficients in Q(z) are algebraic (of a very precise form). No general result is known when the order is 2. In this paper, we determine the form of a G-function solution of an inhomogeneous equation of order 1 with coefficients in Q(z), as well as that of a G-function f of differential order 2 over Q(z) and such that f and f ′ are algebraically dependent over C(z). Our results apply more generally to holonomic Nilsson-Gevrey arithmetic series of order 0 that encompass G-functions.