非负矩阵分解的投影方法

IF 0.7 4区 数学 Q2 Mathematics
Patrick Groetzner
{"title":"非负矩阵分解的投影方法","authors":"Patrick Groetzner","doi":"10.13001/ela.2021.5067","DOIUrl":null,"url":null,"abstract":"In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs a NMF under certain constraints. Consider a given square matrix $A$. The symmetric NMF aims for a nonnegative low-rank approximation $A\\approx XX^T$ to $A$, where $X$ is entrywise nonnegative and of given order. Considering a rectangular input matrix $A$, the general NMF again aims for a nonnegative low-rank approximation to $A$ which is now of the type $A\\approx XY$ for entrywise nonnegative matrices $X,Y$ of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative matrix factorization problem (of type $A=XY$), based on projection approaches to solve a certain feasibility problem.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A projective approach to nonnegative matrix factorization\",\"authors\":\"Patrick Groetzner\",\"doi\":\"10.13001/ela.2021.5067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs a NMF under certain constraints. Consider a given square matrix $A$. The symmetric NMF aims for a nonnegative low-rank approximation $A\\\\approx XX^T$ to $A$, where $X$ is entrywise nonnegative and of given order. Considering a rectangular input matrix $A$, the general NMF again aims for a nonnegative low-rank approximation to $A$ which is now of the type $A\\\\approx XY$ for entrywise nonnegative matrices $X,Y$ of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative matrix factorization problem (of type $A=XY$), based on projection approaches to solve a certain feasibility problem.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2021.5067\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.5067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在数据科学和机器学习中,非负矩阵分解(NMF)方法是一个非常受欢迎的强大工具。根据具体的应用,存在几个子类,每个子类在特定的约束下执行NMF。考虑一个给定的方阵a。对称NMF的目标是一个非负的低秩近似$ a \约XX^T$到$ a $,其中$X$是非负的并且是给定顺序的。考虑一个矩形输入矩阵$ a $,一般的NMF再次以$ a $的非负低秩近似为目标,对于给定顺序的入口非负矩阵$X,Y$,它现在的类型为$ a \约XY$。本文引入了一种新的启发式方法来解决(类型为$ a =XY$)的精确非负矩阵分解问题,该方法基于求解某可行性问题的投影方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A projective approach to nonnegative matrix factorization
In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs a NMF under certain constraints. Consider a given square matrix $A$. The symmetric NMF aims for a nonnegative low-rank approximation $A\approx XX^T$ to $A$, where $X$ is entrywise nonnegative and of given order. Considering a rectangular input matrix $A$, the general NMF again aims for a nonnegative low-rank approximation to $A$ which is now of the type $A\approx XY$ for entrywise nonnegative matrices $X,Y$ of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative matrix factorization problem (of type $A=XY$), based on projection approaches to solve a certain feasibility problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信