{"title":"保护ECC免受故障攻击:重述环扩展方法","authors":"M. Joye","doi":"10.1515/jmc-2019-0030","DOIUrl":null,"url":null,"abstract":"Abstract Due to its shorter key size, elliptic curve cryptography (ECC) is gaining more and more popularity. However, if not properly implemented, the resulting cryptosystems may be susceptible to fault attacks. Over the past few years, several techniques for secure implementations have been published. This paper revisits the ring extension method and its adaptation to the elliptic curve setting.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"254 - 267"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2019-0030","citationCount":"6","resultStr":"{\"title\":\"Protecting ECC Against Fault Attacks: The Ring Extension Method Revisited\",\"authors\":\"M. Joye\",\"doi\":\"10.1515/jmc-2019-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Due to its shorter key size, elliptic curve cryptography (ECC) is gaining more and more popularity. However, if not properly implemented, the resulting cryptosystems may be susceptible to fault attacks. Over the past few years, several techniques for secure implementations have been published. This paper revisits the ring extension method and its adaptation to the elliptic curve setting.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"14 1\",\"pages\":\"254 - 267\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2019-0030\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2019-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2019-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Protecting ECC Against Fault Attacks: The Ring Extension Method Revisited
Abstract Due to its shorter key size, elliptic curve cryptography (ECC) is gaining more and more popularity. However, if not properly implemented, the resulting cryptosystems may be susceptible to fault attacks. Over the past few years, several techniques for secure implementations have been published. This paper revisits the ring extension method and its adaptation to the elliptic curve setting.