利用深Sigmoid网学习稀疏光滑函数

IF 1 4区 数学
Xia Liu
{"title":"利用深Sigmoid网学习稀疏光滑函数","authors":"Xia Liu","doi":"10.1007/s11766-023-4309-4","DOIUrl":null,"url":null,"abstract":"<div><p>To pursue the outperformance of deep nets in learning, we construct a deep net with three hidden layers and prove that, implementing the empirical risk minimization (ERM) on this deep net, the estimator can theoretically realize the optimal learning rates without the classical saturation problem. In other words, deepening the networks with only three hidden layers can overcome the saturation and not degrade the optimal learning rates. The obtained results underlie the success of deep nets and provide a theoretical guidance for deep learning.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"38 2","pages":"293 - 309"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning sparse and smooth functions by deep Sigmoid nets\",\"authors\":\"Xia Liu\",\"doi\":\"10.1007/s11766-023-4309-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To pursue the outperformance of deep nets in learning, we construct a deep net with three hidden layers and prove that, implementing the empirical risk minimization (ERM) on this deep net, the estimator can theoretically realize the optimal learning rates without the classical saturation problem. In other words, deepening the networks with only three hidden layers can overcome the saturation and not degrade the optimal learning rates. The obtained results underlie the success of deep nets and provide a theoretical guidance for deep learning.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"38 2\",\"pages\":\"293 - 309\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-023-4309-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-023-4309-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了追求深度网络在学习方面的卓越性能,我们构建了一个具有三隐层的深度网络,并证明了在该深度网络上实现经验风险最小化(ERM),估计器理论上可以实现最优学习率,而不存在经典的饱和问题。换句话说,仅用三个隐藏层加深网络可以克服饱和并且不会降低最佳学习率。所得结果为深度网络的成功奠定了基础,并为深度学习提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning sparse and smooth functions by deep Sigmoid nets

To pursue the outperformance of deep nets in learning, we construct a deep net with three hidden layers and prove that, implementing the empirical risk minimization (ERM) on this deep net, the estimator can theoretically realize the optimal learning rates without the classical saturation problem. In other words, deepening the networks with only three hidden layers can overcome the saturation and not degrade the optimal learning rates. The obtained results underlie the success of deep nets and provide a theoretical guidance for deep learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信