Yuexiao Dong , Abdul-Nasah Soale , Michael D. Power
{"title":"多元响应回归充分降维的选择性评价","authors":"Yuexiao Dong , Abdul-Nasah Soale , Michael D. Power","doi":"10.1016/j.jspi.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>We review sufficient dimension reduction (SDR) estimators with multivariate response in this paper. A wide range of SDR methods are characterized as inverse regression SDR estimators or forward regression SDR estimators. The inverse regression family includes pooled marginal estimators, projective resampling estimators, and distance-based estimators. Ordinary least squares, partial least squares, and semiparametric SDR estimators, on the other hand, are discussed as estimators from the forward regression family.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A selective review of sufficient dimension reduction for multivariate response regression\",\"authors\":\"Yuexiao Dong , Abdul-Nasah Soale , Michael D. Power\",\"doi\":\"10.1016/j.jspi.2023.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review sufficient dimension reduction (SDR) estimators with multivariate response in this paper. A wide range of SDR methods are characterized as inverse regression SDR estimators or forward regression SDR estimators. The inverse regression family includes pooled marginal estimators, projective resampling estimators, and distance-based estimators. Ordinary least squares, partial least squares, and semiparametric SDR estimators, on the other hand, are discussed as estimators from the forward regression family.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375823000150\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000150","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A selective review of sufficient dimension reduction for multivariate response regression
We review sufficient dimension reduction (SDR) estimators with multivariate response in this paper. A wide range of SDR methods are characterized as inverse regression SDR estimators or forward regression SDR estimators. The inverse regression family includes pooled marginal estimators, projective resampling estimators, and distance-based estimators. Ordinary least squares, partial least squares, and semiparametric SDR estimators, on the other hand, are discussed as estimators from the forward regression family.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.