具有Riesz-Caputo分数阶导数的微分耦合系统的存在唯一性及Ulam-Hyers-Rassias稳定性

Q4 Mathematics
Abdelkrim Salim, J. Lazreg, M. Benchohra
{"title":"具有Riesz-Caputo分数阶导数的微分耦合系统的存在唯一性及Ulam-Hyers-Rassias稳定性","authors":"Abdelkrim Salim, J. Lazreg, M. Benchohra","doi":"10.2478/tmmp-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract This article deals with the existence, uniqueness and Ulam-Hyers--Rassias stability results for a class of coupled systems for implicit fractional differential equations with Riesz-Caputo fractional derivative and boundary conditions. We will employ the Banach’s contraction principle as well as Schauder’s fixed point theorem to demonstrate our existence results. We provide an example to illustrate the obtained results.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"84 1","pages":"111 - 138"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence, Uniqueness and Ulam-Hyers-Rassias Stability of Differential Coupled Systems with Riesz-Caputo Fractional Derivative\",\"authors\":\"Abdelkrim Salim, J. Lazreg, M. Benchohra\",\"doi\":\"10.2478/tmmp-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article deals with the existence, uniqueness and Ulam-Hyers--Rassias stability results for a class of coupled systems for implicit fractional differential equations with Riesz-Caputo fractional derivative and boundary conditions. We will employ the Banach’s contraction principle as well as Schauder’s fixed point theorem to demonstrate our existence results. We provide an example to illustrate the obtained results.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"84 1\",\"pages\":\"111 - 138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类具有Riesz-Caputo分数阶导数和边界条件的隐式分数阶微分方程耦合系统的存在唯一性和Ulam-Hyers—Rassias稳定性结果。我们将使用巴拿赫的收缩原理和Schauder的不动点定理来证明我们的存在性结果。我们提供了一个例子来说明所得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, Uniqueness and Ulam-Hyers-Rassias Stability of Differential Coupled Systems with Riesz-Caputo Fractional Derivative
Abstract This article deals with the existence, uniqueness and Ulam-Hyers--Rassias stability results for a class of coupled systems for implicit fractional differential equations with Riesz-Caputo fractional derivative and boundary conditions. We will employ the Banach’s contraction principle as well as Schauder’s fixed point theorem to demonstrate our existence results. We provide an example to illustrate the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信