数据不确定系统的可靠潮流和短路分析

Q2 Engineering
Shashwati Ray, Shimpy Ralhan
{"title":"数据不确定系统的可靠潮流和短路分析","authors":"Shashwati Ray, Shimpy Ralhan","doi":"10.1504/IJRS.2018.10013806","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of uncertainties in the input parameters by specifying them as compact intervals, taking into consideration the errors in modelling and measurement of transmission line parameters and also the continuous influence of load measurement errors and fluctuations in the load demand. The power flow equations are modelled as a set of nonlinear algebraic equations which are first linearised using Taylor series expansion and the solution is obtained by the Krawczyk's method of interval arithmetic. For the short circuit analysis the prefault conditions are obtained from power flow analysis and the faulty network is then solved using Thevenin's equivalent network as seen from the fault point. The proposed method is applied to 3 bus, 14 bus and 30 bus IEEE test systems where load currents and fault currents for each relay are obtained in bounded form and thus well-defined relay coordination pairs are available.","PeriodicalId":39031,"journal":{"name":"International Journal of Reliability and Safety","volume":"12 1","pages":"166-186"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable power flow and short circuit analysis of systems with uncertain data\",\"authors\":\"Shashwati Ray, Shimpy Ralhan\",\"doi\":\"10.1504/IJRS.2018.10013806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of uncertainties in the input parameters by specifying them as compact intervals, taking into consideration the errors in modelling and measurement of transmission line parameters and also the continuous influence of load measurement errors and fluctuations in the load demand. The power flow equations are modelled as a set of nonlinear algebraic equations which are first linearised using Taylor series expansion and the solution is obtained by the Krawczyk's method of interval arithmetic. For the short circuit analysis the prefault conditions are obtained from power flow analysis and the faulty network is then solved using Thevenin's equivalent network as seen from the fault point. The proposed method is applied to 3 bus, 14 bus and 30 bus IEEE test systems where load currents and fault currents for each relay are obtained in bounded form and thus well-defined relay coordination pairs are available.\",\"PeriodicalId\":39031,\"journal\":{\"name\":\"International Journal of Reliability and Safety\",\"volume\":\"12 1\",\"pages\":\"166-186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJRS.2018.10013806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJRS.2018.10013806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文通过将输入参数指定为紧凑区间来解决输入参数的不确定性问题,同时考虑到输电线路参数建模和测量中的误差,以及负荷测量误差和负荷需求波动的持续影响。潮流方程被建模为一组非线性代数方程,这些方程首先使用泰勒级数展开进行线性化,并通过Krawczyk的区间算术方法获得解。对于短路分析,从潮流分析中获得预故障条件,然后使用从故障点看的Thevenin等效网络来求解故障网络。所提出的方法应用于3总线、14总线和30总线的IEEE测试系统,其中每个继电器的负载电流和故障电流以有界形式获得,因此可以获得定义明确的继电器协调对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable power flow and short circuit analysis of systems with uncertain data
This paper addresses the problem of uncertainties in the input parameters by specifying them as compact intervals, taking into consideration the errors in modelling and measurement of transmission line parameters and also the continuous influence of load measurement errors and fluctuations in the load demand. The power flow equations are modelled as a set of nonlinear algebraic equations which are first linearised using Taylor series expansion and the solution is obtained by the Krawczyk's method of interval arithmetic. For the short circuit analysis the prefault conditions are obtained from power flow analysis and the faulty network is then solved using Thevenin's equivalent network as seen from the fault point. The proposed method is applied to 3 bus, 14 bus and 30 bus IEEE test systems where load currents and fault currents for each relay are obtained in bounded form and thus well-defined relay coordination pairs are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Reliability and Safety
International Journal of Reliability and Safety Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.00
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信