基于不确定性判别能力的特征选择在计算机视觉应用中的应用

Q4 Computer Science
Marwa Chakroun, Sonda Ammar Bouhamed, I. Kallel, B. Solaiman, H. Derbel
{"title":"基于不确定性判别能力的特征选择在计算机视觉应用中的应用","authors":"Marwa Chakroun, Sonda Ammar Bouhamed, I. Kallel, B. Solaiman, H. Derbel","doi":"10.5565/rev/elcvia.1361","DOIUrl":null,"url":null,"abstract":"Feature selection is a prolific research field, which has been widely studied in the last decades and has been successfully applied to numerous computer vision systems. It mainly aims to reduce the dimensionality and thus the system complexity. Features have not the same importance within the different classes. Some of them perform for class representation while others perform for class separation. In this paper, a new feature selection method based on discriminative power is proposed to select the relevant features under an uncertain framework, where the uncertainty is expressed through a possibility distribution. In an uncertain context, our method shows its ability to select features that can represent and discriminate between classes.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature selection based on discriminative power under uncertainty for computer vision applications\",\"authors\":\"Marwa Chakroun, Sonda Ammar Bouhamed, I. Kallel, B. Solaiman, H. Derbel\",\"doi\":\"10.5565/rev/elcvia.1361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is a prolific research field, which has been widely studied in the last decades and has been successfully applied to numerous computer vision systems. It mainly aims to reduce the dimensionality and thus the system complexity. Features have not the same importance within the different classes. Some of them perform for class representation while others perform for class separation. In this paper, a new feature selection method based on discriminative power is proposed to select the relevant features under an uncertain framework, where the uncertainty is expressed through a possibility distribution. In an uncertain context, our method shows its ability to select features that can represent and discriminate between classes.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/rev/elcvia.1361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/elcvia.1361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

特征选择是一个研究成果丰富的领域,近几十年来得到了广泛的研究,并成功地应用于众多计算机视觉系统中。它的主要目的是降低维数,从而降低系统的复杂性。特征在不同的类别中具有不同的重要性。其中一些用于类表示,而另一些用于类分离。本文提出了一种新的基于判别能力的特征选择方法,在不确定框架下选择相关特征,其中不确定性通过可能性分布表示。在不确定的上下文中,我们的方法显示了其选择可以表示和区分类的特征的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection based on discriminative power under uncertainty for computer vision applications
Feature selection is a prolific research field, which has been widely studied in the last decades and has been successfully applied to numerous computer vision systems. It mainly aims to reduce the dimensionality and thus the system complexity. Features have not the same importance within the different classes. Some of them perform for class representation while others perform for class separation. In this paper, a new feature selection method based on discriminative power is proposed to select the relevant features under an uncertain framework, where the uncertainty is expressed through a possibility distribution. In an uncertain context, our method shows its ability to select features that can represent and discriminate between classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信