{"title":"正交字典中加入一个向量时弱贪婪算法的收敛性","authors":"A. S. Orlova","doi":"10.3103/S0027132222050060","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":"77 1","pages":"227 - 235"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of a Weak Greedy Algorithm When One Vector Is Added to the Orthogonal Dictionary\",\"authors\":\"A. S. Orlova\",\"doi\":\"10.3103/S0027132222050060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":42963,\"journal\":{\"name\":\"Moscow University Mathematics Bulletin\",\"volume\":\"77 1\",\"pages\":\"227 - 235\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/S0027132222050060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/S0027132222050060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Moscow University Mathematics Bulletin is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.