随机系统的Fokker-Planck控制框架

IF 1.3 Q1 MATHEMATICS
M. Annunziato, A. Borzì
{"title":"随机系统的Fokker-Planck控制框架","authors":"M. Annunziato, A. Borzì","doi":"10.4171/EMSS/27","DOIUrl":null,"url":null,"abstract":"A new framework for the optimal control of probability density functions (PDF) of stochastic processes is reviewed. This framework is based on Fokker-Planck (FP) partial differential equations that govern the time evolution of the PDF of stochastic systems and on control objectives that may require to follow a given PDF trajectory or to minimize an expectation functional. Corresponding to different stochastic processes, different FP equations are obtained. In particular, FP equations of parabolic, fractional parabolic, integro parabolic, and hyperbolic type are discussed. The corresponding optimization problems are deterministic and can be formulated in an open-loop framework and within a closed-loop model predictive control strategy. The connection between the Dynamic Programming scheme given by the Hamilton-Jacobi-Bellman equation and the FP control framework is discussed. Under appropriate assumptions, it is shown that the two strategies are equivalent. Some applications of the FP control framework to different models are discussed and its extension in a mean-field framework is elucidated. This is a preprint of the paper Mario Annunziato and Alfio Borzì A Fokker–Planck control framework for stochastic systems EMS Surveys In Mathematical Sciences, 5 (2018), 65 98. (DOI: 10.4171/EMSS/27)","PeriodicalId":43833,"journal":{"name":"EMS Surveys in Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/EMSS/27","citationCount":"16","resultStr":"{\"title\":\"A Fokker–Planck control framework for stochastic systems\",\"authors\":\"M. Annunziato, A. Borzì\",\"doi\":\"10.4171/EMSS/27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new framework for the optimal control of probability density functions (PDF) of stochastic processes is reviewed. This framework is based on Fokker-Planck (FP) partial differential equations that govern the time evolution of the PDF of stochastic systems and on control objectives that may require to follow a given PDF trajectory or to minimize an expectation functional. Corresponding to different stochastic processes, different FP equations are obtained. In particular, FP equations of parabolic, fractional parabolic, integro parabolic, and hyperbolic type are discussed. The corresponding optimization problems are deterministic and can be formulated in an open-loop framework and within a closed-loop model predictive control strategy. The connection between the Dynamic Programming scheme given by the Hamilton-Jacobi-Bellman equation and the FP control framework is discussed. Under appropriate assumptions, it is shown that the two strategies are equivalent. Some applications of the FP control framework to different models are discussed and its extension in a mean-field framework is elucidated. This is a preprint of the paper Mario Annunziato and Alfio Borzì A Fokker–Planck control framework for stochastic systems EMS Surveys In Mathematical Sciences, 5 (2018), 65 98. (DOI: 10.4171/EMSS/27)\",\"PeriodicalId\":43833,\"journal\":{\"name\":\"EMS Surveys in Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/EMSS/27\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMS Surveys in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/EMSS/27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMS Surveys in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/EMSS/27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

摘要

综述了随机过程概率密度函数(PDF)最优控制的一个新框架。该框架基于控制随机系统PDF的时间演化的福克-普朗克(FP)偏微分方程,以及可能需要遵循给定PDF轨迹或最小化期望函数的控制目标。针对不同的随机过程,得到了不同的FP方程。特别讨论了抛物型、分数抛物型、积分抛物型和双曲型的FP方程。相应的优化问题是确定性的,可以在开环框架和闭环模型预测控制策略中进行表述。讨论了由Hamilton-Jacobi-Bellman方程给出的动态规划方案与FP控制框架之间的联系。在适当的假设下,这两种策略是等价的。讨论了FP控制框架在不同模型中的一些应用,并阐述了它在平均场框架中的扩展。这是论文Mario Annunziato和Alfio Borzìa Fokker–Planck随机系统控制框架数学科学中的EMS调查,5(2018),6598的预印本。(DOI:10.4171/EMSS/27)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fokker–Planck control framework for stochastic systems
A new framework for the optimal control of probability density functions (PDF) of stochastic processes is reviewed. This framework is based on Fokker-Planck (FP) partial differential equations that govern the time evolution of the PDF of stochastic systems and on control objectives that may require to follow a given PDF trajectory or to minimize an expectation functional. Corresponding to different stochastic processes, different FP equations are obtained. In particular, FP equations of parabolic, fractional parabolic, integro parabolic, and hyperbolic type are discussed. The corresponding optimization problems are deterministic and can be formulated in an open-loop framework and within a closed-loop model predictive control strategy. The connection between the Dynamic Programming scheme given by the Hamilton-Jacobi-Bellman equation and the FP control framework is discussed. Under appropriate assumptions, it is shown that the two strategies are equivalent. Some applications of the FP control framework to different models are discussed and its extension in a mean-field framework is elucidated. This is a preprint of the paper Mario Annunziato and Alfio Borzì A Fokker–Planck control framework for stochastic systems EMS Surveys In Mathematical Sciences, 5 (2018), 65 98. (DOI: 10.4171/EMSS/27)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信