P. Sharma, N. Negi, Himanshu Thakur, Jabez Raju Battu, M. Turnbull
{"title":"昆虫间隙连接可能成为害虫管理的潜在目标","authors":"P. Sharma, N. Negi, Himanshu Thakur, Jabez Raju Battu, M. Turnbull","doi":"10.1093/aesa/saac021","DOIUrl":null,"url":null,"abstract":"Abstract Gap junctions are integral membrane proteins that play a role in cell-to-cell communication. They are coded by the functional genes called connexins in chordates and innexins in invertebrates. However, recently pannexins were also found in mammalian genomes, which are homologous to insect innexins. Gap junction intercellular communication (GJIC) has different functions ranging from their role in ontogenesis to the transfer of intracellular signal molecules and minimizing the adverse effects of xenobiotics by dilution and steady-state catabolism. Perturbations of these gap junctions are known to promote cancers besides, and many tumor inducers reduce the functioning of these gap junctions. Insect gap junctions play a crucial role in the development of insects and perhaps might be one of the reasons for the success of insects on terrestrial habitats. Majority of the work on innexins was done on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae), and its innexins regulate size of the central nervous system, embryonic gut formation, metamorphosis, and the fertility of germ lines in the reproductive system. There are several insecticides like cyclodienes, organochlorines, phenypyrazoles, synthetic pyrethroids, avermectins, milbemycins, oxadiazines, semicarbazones, metadiamides, isoxazolines which target ion channels in the insects, but there is no evidence that supports the possible toxic effects of insecticides on insect gap junctions. In this review, we discuss the importance of insect gap junctions and how they could be a potential target for chemical pest management.","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"115 1","pages":"449 - 460"},"PeriodicalIF":3.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Insect Gap Junctions Could Be a Potential Target for Pest Management\",\"authors\":\"P. Sharma, N. Negi, Himanshu Thakur, Jabez Raju Battu, M. Turnbull\",\"doi\":\"10.1093/aesa/saac021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Gap junctions are integral membrane proteins that play a role in cell-to-cell communication. They are coded by the functional genes called connexins in chordates and innexins in invertebrates. However, recently pannexins were also found in mammalian genomes, which are homologous to insect innexins. Gap junction intercellular communication (GJIC) has different functions ranging from their role in ontogenesis to the transfer of intracellular signal molecules and minimizing the adverse effects of xenobiotics by dilution and steady-state catabolism. Perturbations of these gap junctions are known to promote cancers besides, and many tumor inducers reduce the functioning of these gap junctions. Insect gap junctions play a crucial role in the development of insects and perhaps might be one of the reasons for the success of insects on terrestrial habitats. Majority of the work on innexins was done on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae), and its innexins regulate size of the central nervous system, embryonic gut formation, metamorphosis, and the fertility of germ lines in the reproductive system. There are several insecticides like cyclodienes, organochlorines, phenypyrazoles, synthetic pyrethroids, avermectins, milbemycins, oxadiazines, semicarbazones, metadiamides, isoxazolines which target ion channels in the insects, but there is no evidence that supports the possible toxic effects of insecticides on insect gap junctions. In this review, we discuss the importance of insect gap junctions and how they could be a potential target for chemical pest management.\",\"PeriodicalId\":8076,\"journal\":{\"name\":\"Annals of The Entomological Society of America\",\"volume\":\"115 1\",\"pages\":\"449 - 460\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of The Entomological Society of America\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/aesa/saac021\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saac021","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Insect Gap Junctions Could Be a Potential Target for Pest Management
Abstract Gap junctions are integral membrane proteins that play a role in cell-to-cell communication. They are coded by the functional genes called connexins in chordates and innexins in invertebrates. However, recently pannexins were also found in mammalian genomes, which are homologous to insect innexins. Gap junction intercellular communication (GJIC) has different functions ranging from their role in ontogenesis to the transfer of intracellular signal molecules and minimizing the adverse effects of xenobiotics by dilution and steady-state catabolism. Perturbations of these gap junctions are known to promote cancers besides, and many tumor inducers reduce the functioning of these gap junctions. Insect gap junctions play a crucial role in the development of insects and perhaps might be one of the reasons for the success of insects on terrestrial habitats. Majority of the work on innexins was done on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae), and its innexins regulate size of the central nervous system, embryonic gut formation, metamorphosis, and the fertility of germ lines in the reproductive system. There are several insecticides like cyclodienes, organochlorines, phenypyrazoles, synthetic pyrethroids, avermectins, milbemycins, oxadiazines, semicarbazones, metadiamides, isoxazolines which target ion channels in the insects, but there is no evidence that supports the possible toxic effects of insecticides on insect gap junctions. In this review, we discuss the importance of insect gap junctions and how they could be a potential target for chemical pest management.
期刊介绍:
The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.