单轴加载条件下微织构不锈钢表面的静态润湿特性

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
A. Anand, V. Arumugam, R. Kannan
{"title":"单轴加载条件下微织构不锈钢表面的静态润湿特性","authors":"A. Anand, V. Arumugam, R. Kannan","doi":"10.1504/IJSURFSE.2017.10005752","DOIUrl":null,"url":null,"abstract":"The wetting behaviour associated with the surface micro asperities is investigated on the groove and pillar textured SS304 solid surface which is widely used in the flight vehicles where the stresses are induced by uniaxial compressive loads for both positive and negative curvature. By varying the applied load on the groove-textured surfaces in the direction perpendicular to grooves, the positive curvature shows a decrease in static contact angle initially then increases for further increase in deflection; however, the negative curvature induced by the same applied load shows an opposite trend. At the same time, in the pillar-textured surface, the static contact angle decreases with increase in applied load for the positive curvature and the same wetting parameter shows an opposite trend for the negative curvature. This phenomenon is mainly attributed to the pinning behaviour of the three phase contact line of the liquid drop on these two surfaces.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":"11 1","pages":"174"},"PeriodicalIF":1.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Static Wetting Characteristics of Micro-textured Stainless Steel Surfaces under Uniaxial Loading Condition\",\"authors\":\"A. Anand, V. Arumugam, R. Kannan\",\"doi\":\"10.1504/IJSURFSE.2017.10005752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wetting behaviour associated with the surface micro asperities is investigated on the groove and pillar textured SS304 solid surface which is widely used in the flight vehicles where the stresses are induced by uniaxial compressive loads for both positive and negative curvature. By varying the applied load on the groove-textured surfaces in the direction perpendicular to grooves, the positive curvature shows a decrease in static contact angle initially then increases for further increase in deflection; however, the negative curvature induced by the same applied load shows an opposite trend. At the same time, in the pillar-textured surface, the static contact angle decreases with increase in applied load for the positive curvature and the same wetting parameter shows an opposite trend for the negative curvature. This phenomenon is mainly attributed to the pinning behaviour of the three phase contact line of the liquid drop on these two surfaces.\",\"PeriodicalId\":14460,\"journal\":{\"name\":\"International Journal of Surface Science and Engineering\",\"volume\":\"11 1\",\"pages\":\"174\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSURFSE.2017.10005752\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/IJSURFSE.2017.10005752","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

在飞行器中广泛使用的单轴正曲率和负曲率压缩载荷诱导应力的槽状和柱状织构SS304固体表面上,研究了与表面微凸起相关的润湿行为。在垂直于沟槽的方向上,通过改变施加在沟槽纹理表面上的载荷,正曲率表现为静态接触角最初减小,然后随着挠度的进一步增加而增加;然而,同样的荷载引起的负曲率呈现相反的趋势。同时,在柱状织构表面,对于正曲率,静态接触角随着外加载荷的增加而减小,对于负曲率,相同的润湿参数呈现相反的趋势。这种现象主要是由于液滴在这两个表面上的三相接触线的钉住行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static Wetting Characteristics of Micro-textured Stainless Steel Surfaces under Uniaxial Loading Condition
The wetting behaviour associated with the surface micro asperities is investigated on the groove and pillar textured SS304 solid surface which is widely used in the flight vehicles where the stresses are induced by uniaxial compressive loads for both positive and negative curvature. By varying the applied load on the groove-textured surfaces in the direction perpendicular to grooves, the positive curvature shows a decrease in static contact angle initially then increases for further increase in deflection; however, the negative curvature induced by the same applied load shows an opposite trend. At the same time, in the pillar-textured surface, the static contact angle decreases with increase in applied load for the positive curvature and the same wetting parameter shows an opposite trend for the negative curvature. This phenomenon is mainly attributed to the pinning behaviour of the three phase contact line of the liquid drop on these two surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
25.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信