{"title":"镍基葡萄糖非酶电化学传感催化剂的研究进展","authors":"Filippo Franceschini , Irene Taurino","doi":"10.1016/j.phmed.2022.100054","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel-based catalysts are currently the subject of intensive study in the search for novel electrode materials for non-enzymatic glucose sensing. Their strong activity towards glucose electrooxidation and intrinsic resistance to chloride poisoning makes these catalysts ideal candidates for the development of affordable and stable glucose sensors. In this review, the mechanism of glucose electrooxidation at Ni electrodes is described, clarifying the effect of the different phases of Ni on their catalytic activity. Moreover, a brief background on chloride poisoning is provided, supplemented by computational studies. Furthermore, this article details the most intriguing compounds of Ni (selenides, sulfides, nitrates) and the analytical performance of the respective sensors. Additional focus points of this work are multimetallic nanosystems where Ni is a component, and the growing field of conductive metal organic frameworks with Ni centers. This review will be beneficial for researchers who aim at delving deeper into the potential of Ni-based materials for glucose sensing.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"14 ","pages":"Article 100054"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352451022000087/pdfft?md5=69ea369612cc3d6f7428590cac8c9691&pid=1-s2.0-S2352451022000087-main.pdf","citationCount":"9","resultStr":"{\"title\":\"Nickel-based catalysts for non-enzymatic electrochemical sensing of glucose: A review\",\"authors\":\"Filippo Franceschini , Irene Taurino\",\"doi\":\"10.1016/j.phmed.2022.100054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nickel-based catalysts are currently the subject of intensive study in the search for novel electrode materials for non-enzymatic glucose sensing. Their strong activity towards glucose electrooxidation and intrinsic resistance to chloride poisoning makes these catalysts ideal candidates for the development of affordable and stable glucose sensors. In this review, the mechanism of glucose electrooxidation at Ni electrodes is described, clarifying the effect of the different phases of Ni on their catalytic activity. Moreover, a brief background on chloride poisoning is provided, supplemented by computational studies. Furthermore, this article details the most intriguing compounds of Ni (selenides, sulfides, nitrates) and the analytical performance of the respective sensors. Additional focus points of this work are multimetallic nanosystems where Ni is a component, and the growing field of conductive metal organic frameworks with Ni centers. This review will be beneficial for researchers who aim at delving deeper into the potential of Ni-based materials for glucose sensing.</p></div>\",\"PeriodicalId\":37787,\"journal\":{\"name\":\"Physics in Medicine\",\"volume\":\"14 \",\"pages\":\"Article 100054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352451022000087/pdfft?md5=69ea369612cc3d6f7428590cac8c9691&pid=1-s2.0-S2352451022000087-main.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352451022000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451022000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Nickel-based catalysts for non-enzymatic electrochemical sensing of glucose: A review
Nickel-based catalysts are currently the subject of intensive study in the search for novel electrode materials for non-enzymatic glucose sensing. Their strong activity towards glucose electrooxidation and intrinsic resistance to chloride poisoning makes these catalysts ideal candidates for the development of affordable and stable glucose sensors. In this review, the mechanism of glucose electrooxidation at Ni electrodes is described, clarifying the effect of the different phases of Ni on their catalytic activity. Moreover, a brief background on chloride poisoning is provided, supplemented by computational studies. Furthermore, this article details the most intriguing compounds of Ni (selenides, sulfides, nitrates) and the analytical performance of the respective sensors. Additional focus points of this work are multimetallic nanosystems where Ni is a component, and the growing field of conductive metal organic frameworks with Ni centers. This review will be beneficial for researchers who aim at delving deeper into the potential of Ni-based materials for glucose sensing.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.