Drajat Indah Mawarni, W. E. Juwana, I. Catrawedarma, K. A. Yuana, W. Budhijanto, D. Deendarlianto, I. Indarto
{"title":"旋涡式气泡发生器系统中气泡破碎流结构的统计特征","authors":"Drajat Indah Mawarni, W. E. Juwana, I. Catrawedarma, K. A. Yuana, W. Budhijanto, D. Deendarlianto, I. Indarto","doi":"10.22146/ajche.78558","DOIUrl":null,"url":null,"abstract":"The bubble breakup pattern on a swirl-type bubble generator (MBG) with water and air fluids was experimentally studied. The bubble breakup pattern was analyzed visually and characterized using several parameters such as Pressure Drop (∆P), Kolmogorov Entropy, Standard Deviation, and DWT (Discrete Wavelet Transform), which were taken from the extraction of pressure signals at the water inlet and outlet of the bubble generator. The wavelet spectrum of the measured signal was shown to identify the overall bubble breakup pattern, and the wavelet variance vector is proposed as a character vector to identify the bubble breakup pattern. The results show that there were three types of different flow breakup patterns: (1) static breakup, (2) dynamic breakup, and (3) tensile breakup. The observed bubble breakup sub-patterns can be categorized into tensile, moderate tensile, high tensile, dynamic, low dynamic, static, and high static sub-patterns. The static clustered breakup pattern has the highest wavelet energy compared to the tensile and dynamic clustered breakup.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Characterization of Bubble Breakup Flow Structures in Swirl-Type Bubble Generator Systems\",\"authors\":\"Drajat Indah Mawarni, W. E. Juwana, I. Catrawedarma, K. A. Yuana, W. Budhijanto, D. Deendarlianto, I. Indarto\",\"doi\":\"10.22146/ajche.78558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bubble breakup pattern on a swirl-type bubble generator (MBG) with water and air fluids was experimentally studied. The bubble breakup pattern was analyzed visually and characterized using several parameters such as Pressure Drop (∆P), Kolmogorov Entropy, Standard Deviation, and DWT (Discrete Wavelet Transform), which were taken from the extraction of pressure signals at the water inlet and outlet of the bubble generator. The wavelet spectrum of the measured signal was shown to identify the overall bubble breakup pattern, and the wavelet variance vector is proposed as a character vector to identify the bubble breakup pattern. The results show that there were three types of different flow breakup patterns: (1) static breakup, (2) dynamic breakup, and (3) tensile breakup. The observed bubble breakup sub-patterns can be categorized into tensile, moderate tensile, high tensile, dynamic, low dynamic, static, and high static sub-patterns. The static clustered breakup pattern has the highest wavelet energy compared to the tensile and dynamic clustered breakup.\",\"PeriodicalId\":8490,\"journal\":{\"name\":\"ASEAN Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ajche.78558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.78558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
Statistical Characterization of Bubble Breakup Flow Structures in Swirl-Type Bubble Generator Systems
The bubble breakup pattern on a swirl-type bubble generator (MBG) with water and air fluids was experimentally studied. The bubble breakup pattern was analyzed visually and characterized using several parameters such as Pressure Drop (∆P), Kolmogorov Entropy, Standard Deviation, and DWT (Discrete Wavelet Transform), which were taken from the extraction of pressure signals at the water inlet and outlet of the bubble generator. The wavelet spectrum of the measured signal was shown to identify the overall bubble breakup pattern, and the wavelet variance vector is proposed as a character vector to identify the bubble breakup pattern. The results show that there were three types of different flow breakup patterns: (1) static breakup, (2) dynamic breakup, and (3) tensile breakup. The observed bubble breakup sub-patterns can be categorized into tensile, moderate tensile, high tensile, dynamic, low dynamic, static, and high static sub-patterns. The static clustered breakup pattern has the highest wavelet energy compared to the tensile and dynamic clustered breakup.