Reidemeister扭转的一个代数性质

IF 1.1 Q1 MATHEMATICS
Teruaki Kitano, Yuta Nozaki
{"title":"Reidemeister扭转的一个代数性质","authors":"Teruaki Kitano, Yuta Nozaki","doi":"10.1112/tlm3.12049","DOIUrl":null,"url":null,"abstract":"For a 3‐manifold M$M$ and an acyclic SL(2,C)$\\mathit {SL}(2,\\mathbb {C})$ ‐representation ρ$\\rho$ of its fundamental group, the SL(2,C)$\\mathit {SL}(2,\\mathbb {C})$ ‐Reidemeister torsion τρ(M)∈C×$\\tau _\\rho (M) \\in \\mathbb {C}^\\times$ is defined. If there are only finitely many conjugacy classes of irreducible representations, then the Reidemeister torsions are known to be algebraic numbers. Furthermore, we prove that the Reidemeister torsions are not only algebraic numbers but also algebraic integers for most Seifert fibered spaces and infinitely many hyperbolic 3‐manifolds. Also, for a knot exterior E(K)$E(K)$ , we discuss the behavior of τρ(E(K))$\\tau _\\rho (E(K))$ when the restriction of ρ$\\rho$ to the boundary torus is fixed.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algebraic property of Reidemeister torsion\",\"authors\":\"Teruaki Kitano, Yuta Nozaki\",\"doi\":\"10.1112/tlm3.12049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a 3‐manifold M$M$ and an acyclic SL(2,C)$\\\\mathit {SL}(2,\\\\mathbb {C})$ ‐representation ρ$\\\\rho$ of its fundamental group, the SL(2,C)$\\\\mathit {SL}(2,\\\\mathbb {C})$ ‐Reidemeister torsion τρ(M)∈C×$\\\\tau _\\\\rho (M) \\\\in \\\\mathbb {C}^\\\\times$ is defined. If there are only finitely many conjugacy classes of irreducible representations, then the Reidemeister torsions are known to be algebraic numbers. Furthermore, we prove that the Reidemeister torsions are not only algebraic numbers but also algebraic integers for most Seifert fibered spaces and infinitely many hyperbolic 3‐manifolds. Also, for a knot exterior E(K)$E(K)$ , we discuss the behavior of τρ(E(K))$\\\\tau _\\\\rho (E(K))$ when the restriction of ρ$\\\\rho$ to the boundary torus is fixed.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个3流形M$M$和其基群的非循环SL(2,C)$\mathit{SL}(2,\mathbb{C})$表示ρ$\rho$,定义了SL(2、C)$\athit{SL}(2,\ mathbb{C})$Reidemeister扭转τρ(M)∈C×$\tau_\rho(M)\in\mathbb{C}^\times$。如果不可约表示的共轭类只有有限多个,那么Reidemeister扭转就是代数数。此外,我们证明了Reidemeister扭转不仅是代数数,而且是大多数Seifert纤维空间和无穷多双曲3流形的代数整数。此外,对于结外部E(K)$E(K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algebraic property of Reidemeister torsion
For a 3‐manifold M$M$ and an acyclic SL(2,C)$\mathit {SL}(2,\mathbb {C})$ ‐representation ρ$\rho$ of its fundamental group, the SL(2,C)$\mathit {SL}(2,\mathbb {C})$ ‐Reidemeister torsion τρ(M)∈C×$\tau _\rho (M) \in \mathbb {C}^\times$ is defined. If there are only finitely many conjugacy classes of irreducible representations, then the Reidemeister torsions are known to be algebraic numbers. Furthermore, we prove that the Reidemeister torsions are not only algebraic numbers but also algebraic integers for most Seifert fibered spaces and infinitely many hyperbolic 3‐manifolds. Also, for a knot exterior E(K)$E(K)$ , we discuss the behavior of τρ(E(K))$\tau _\rho (E(K))$ when the restriction of ρ$\rho$ to the boundary torus is fixed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信